
Conversion of Infix to Prefix Using a Stack

We will only consider the operators for addition, subtraction, multiplication, exponentiation, and negation. To

avoid the ambiguity I discussed in class, we use Python (not FORTRAN) operator precedence and associativity.

The ambiguity arose with an expression like a^b-c. It could mean a
b−c or a

b
− c. By adopting Python

precedence, it means ab − c. The other expression is written in LATEX as a^{b-c}, and we write a^(b-c) for

this problem.

Operator Precedence

Here are the precedences of the operators.

operator symbol associativity

1. negation ∼

2. exponentiation ∧ right-to-left

3. multiplication ∗ left-to-right

4. addition,subtraction +,− left-to-right

Operator precedence is not relevant in prefix and postfix expressions.

The Stack Algorithm

We assume there is a stack, and the bottom symbol is $. We also assume the input ends with an end of file

symbol, which we also write as $. For convenience, we replace each “− in the input which denotes negation

by ∼.1 Here are the rules of the algorithm which changes infix to postfix.

1. If the current input symbol is a variable, read and write it.

2. If the current input symbol is a left parenthesis, read and push it.

3. If the current input symbol is a right parenthesis and the top symbol of the stack is an operator, pop

the stack and write it.

4. If the current input symbol is a right parenthesis and the top symbol of the stack is a left parenthesis,

read and pop and discard both symbols.

5. If the current input symbol and the top symbol of the stack are both operators, read and push if the

input symbol has higher precedence, otherwise pop and write.

1How can you tell? If the − is preceded by an operator or a left parenthesis, or is the first symbol in the expression, it denotes

negation; otherwise it denotes subtraction.

1

The following table summarizes the actions. The column header indicates the next symbol of the input

file, while the row header indicates the top symbol of the stack.

Variable + − ∗ ∧ ∼ () $

$
read

write

read

push

read

push

read

push

read

push

read

push

read

push
halt

+
read

write

pop

write

pop

write

read

push

read

push

read

push

read

push

pop

write

pop

write

−
read

write

pop

write

pop

write

read

push

read

push

read

push

read

push

pop

write

pop

write

∗
read

write

pop

write

pop

write

pop

write

read

push

read

push

read

push

pop

write

pop

write

∧
read

write

pop

write

pop

write

pop

write

read

push

read

push

read

push

pop

write

pop

write

∼
read

write

pop

write

pop

write

pop

write

pop

write

pop

write

read

push

pop

write

pop

write

(
read

write

read

push

read

push

read

push

read

push

read

push

read

push

read

pop

2

