Clues for Solving Recurrences and Asymptotic Complexity

Problems

1. Solve each recurrence, using O, €2, or ©, whichever is appropriate. Throughout, we assume
the base of the logarithm is 2.

(a)

(b)

()

(e)

(f)

(2)

()

F(n) =4F (%) + 5n?
Use the master theorem.
f(n)=f(n—1)+n.
Anti-derivative method.
fn) = f(5) + /(5) +n

Use the Akra Bazzi method (generalized master theorem) Note that (1/2) + (1/3)! =
1/2+1/3=5/6 <1

Fn) = f(/m) + 1.

Substitute m = logn, i.e., n = 2™. Then log\/n = 3logn =m/2. Let f(n) = G(m) =
G(logn). Then f(y/n) = G(logy/n) = G(%logn) = G(m/2). We have the recurrence
G(m)=G(m/2)+1

By the master theorem

f(n) = G(m) = 6(logm) = O(loglogn).

f(n) =2f(v/n) +logn

Substitute m = logn, then use the master theorem.

H(n) =2H(%) +O(n)

Master theorem.

g(n)=2g9(n—1)+1

Let n = logm, and F(m) = g(n). The answer will be exponential.
G(n) > G(n—1)+1gn

Anti-derivative



(i)

(m)

H(n) < 2H(y/n) + 4.

Substitute m = logn which makes n = 2™. Let G(m) = H(n). Then G(m) = H(2™),
and G(m/2) = H(2™/?) = H((2™)'?) = H(/(2™)) = H(y/n). Finally, G(m) <
2G(m/2) + 4. By the master theorem,

H(n) = G(m) = O(m) = O(logn)

K(n)=K(n—-2yn+1)+n.

Let n =m?, i.e., m = y/n, and G(m) = K(n) = K(m?). Then G(m—1) = G(y/n—1) =
K((v/n—1)?) = K(n —2y/n+1). We then have the recurrence

G(m)=G(m —1)+m?

Finish up by using the anti-derivative method.

F(n) < F(2) + F(3) +n

This is from the BFPRT algorithm.

F(n)=2F(2)+F(%)+n

The Akra Bazzi method. The exponent you need to find is an integer.
f(n) =1+ f(logn)

None of the methods we’ve discussed cover this one. But I expect you to know it.

. Write the asymptotic time complexity for each code fragment, giving the answer in terms
of n, using O, §2, or ©, whichever is appropriate.

For the first five, replace the inner loop by a statement that increments the counter by the
appropriate amount.

(a)

(b)

()

(d)

(e)

for (int i=1; i < n; i++)
for (int j=i; j > 0; j—--)
cout << "hello world" << endl;

for (int i=1; i < n; i++)
for (int j=1; j < 1i; j++)
cout << "hello world" << endl;

for (int i=1; i < n; i = 2%i)
for (int j=1; j < 1i; j++)
cout << "hello world" << endl;

for (int i=1; i < n; i++)
for (int j=1; j < 1i; j = j*2)
cout << "hello world" << endl;
for (int i=1; i < n; i++)
for (int j=i; j < m; j = j*2)
cout << "hello world" << endl;



(f)

for (int i=2; i < n; i = ix*i)
cout << "hello world" << endl;

You will need a substitution.
for (int i=1; i*i < n; i++)
cout << "hello world" << endl;

for (int i=n; i > 1; i = i/2)
for (int j=1; j < i; j=2%j)
cout << "hello world" << endl;

A little complicated, but don’t get scared. Hint: substitute k = logi and £ = log j.

For this problem, george is a function which returns an integer. You have no idea
what that integer will be.

int m = n;
while(m > 0){
int g = george(m);
if (g> 0 m=m-g;
elsem=m- 1;
cout << "hello world" << endl;

}

It is common in practice to not know in advance what an input will be, even asymp-
totically.



