Solutions to Recurrences

Introduction

A recurrence is a definition of values of a function in terms of previous values of the function. To be
complete, a definition of a function using a recurrence must have a non-recursive branch. However, if the
object is to express the value of the function asymptotically, the non-recursive branch may not be necessary,

as in the examples we give here.

In most of our examples, the solution is expressed in © notation, but sometimes we need to write O or ).

Anti-Derivative Method

fl@) = fle—h)
h

In asymptotic analysis, we only need h to be “close” to zero, but still positive. How close? A general rule

The derivative f' of a real-valued function f is defined as fillows: f'(z) = Flbin%
o

is that A must be asymptotically smaller than x.

F(n)—F(n—-1
1. F(n)=F(n—1)+n We can write (n) l(n )zn
1 is close to zero, so we have F’(n) = ©(n), from which we obtain hence F(n) = ©(n?).
F(n)—F(n—
2. Fn) = F(n— yn)+n We can write -2 ﬁ v _ -

\/n is close enough to zero that the left-hand-side is asymptotically the derivative of F.
We have F’(n) = ©(y/n) Taking the anti-derivative, we obtain F'(n) = ©(n*/?)

The Master Theorem

If we have the recurrence F(n) = A F(n/B) 4+ n® where A, B, and C are constants, where A > 0, B > 1,
and C >0

O(n® if B > A O(n° if C > logg A
F(n)=<{ ©(n°logn) if B = A Equivalently: F(n) =4 ©(nlogn) if C =logg A
O(n'es4) if B < A O(n'es4) if C <logg A

3. F(n)=F(n/2)+1
A=1,B=2and C =0, and B® = A. Thus F(n) = ©(n°logn) = O(n°logn) = O(logn).
4. F(n) =2F(n/2)+n
This is one of the most commonly occuring recurrences. A =2, B =2, and C = 1. Thus B¢ = A.
We obtain F(n) = O(nlogn).
5. F(n) =2F(n/2) +1
A=2B=2and C =0. BY < A. logy2 =1, and n' =n. Thus F(n) = O(n).



6. F(n) =2F(n/2) + n?
A=2B=2 and C =2. BY > A. Thus F(n) = ©(n°) = O(n?).

The Generalized Master Theorem

We change the notation to Greek letters, changing A to «, 1/B to S, and C to 7, for example. The
recurrence F(n) = AF(n/B) + n° is now written F(n) = aF(8n) + n".

In the generalized master theorem, we allow multiple terms on the right hand side, each with its own «;

and (,. The general form of the recurrence is

F(n) = Ole(,Bln) + o, F(Bn) + - + o F(Bin) +n”

To solve the recurrence, we first compute I' = Zle ;3] If ' = 1, then F(n) = O(n7logn). If T < 1,
then F'(n) = ©(n"). The hard case is I' > 1. We need to find a constant § such that Zle ;3% = 1. Then
F(n) = 0(n%).

7. The recurrence
F(n) <2F(n/5)+ F(n/2) +n

gives the aymptotic time complexity of the BFPRT algorithm, also known as the “median of medians”
algorithm for selecting the k' smallest item in an array.
k‘:27041:2,51—% —162—%,311(1’)/:1.
I'=21+3 =3 <1 Thus F(n) = O(n") = O(n). However, for other reasons, the complexity is
actually ©(n).
8. F(n) = F(n/3) + F(n/6) + F(n/2) +n
k—30&1—1ﬂ1— 3 1’ﬂ2*% 15*;,7:1
F=1+:+3=1 ThusF( )= @(n“’logn) O(nlogn).
9. F(n) = F(3n/5) + F(4n/5) + n?
k:2aa1:1751:% 152— Y =2

I'= (%)2 + (%)2 = 1. Thus F(n) = ©(n"logn) = ©(n*logn).

10. F(n)=2F(2n/3)+ F(n/3)+n
k=2 a =2, 61:%;042:1,62:%- v=1

r= 2( ) —|— 3= % > 1. Therefore, we must find ¢ such that 2 (%)5 + (%)5 = 1. The correct value is
0 = 2. Thus F( ) = O(n?).



Substitution

We can sometimes use substitution to transform a recurrence into one which we can solve using one of the
above methods.

11. F(n) = F(y/n) + 1
Define a new function G by letting G(m) = F(2™) for any m. Now, let m = log, n, hence G(m) =
F(n) and F(n) = G(logyn), which implies that F(y/n) = G(logy(v/n)) = G(3logyn = G(m/2).
Substituting in the original recurrence, we obtain G(m) = G(m/2) + 1. From Example 3 above, we
have G(m) = ©(logm), hence F(n) = G(m) = ©(logm) = O(loglogn).

12. F(n) =2F(y/n) +logn
We use the same substitution as in the previous problem, namely m = logy, n and G(m) = F(n) We
obtain G(m) = 2G(m/2) +m. By Example 4, we have G(m) = O(mlogm) = O(lognloglogn).

13. F(n) =2F(n—1)+1

You can problably immediately guess that the solution is exponential. We can obtain the solution
by substitution: We define G(m) = F(log, m). Let m = 2" equivalently, n = log, m. Thus F(n) =
G(2") = G(m) and F(n—1) = G(2"~!) = G(2"/2) = G(m/2). Substituting in the original recurrence
we have: G(m) = 2G(m/2) + 1 From Example 5 we have G(m) = O(m). Thus F(n) = G(m) =
O(m) = 6(2").

More Generalizations of the Master Theorem

There are other, even more sophisticated, generalizations of the master theorem. You can find these on
the internet, for example, in Wikipedia.

Other

14. F(n) = F(logn) + 1

The function log*z, the so-called iterated logarithm, is defined recursively, as follows:

N Oifz <1
log™x = N .
1+ log™(log z) otherwise

The solution to our recurrence is then F(n) = ©(log™n). Think of log"x this way. Enter x onto your
calculator. If x < 1, then log*x is zero. Otherwise, push the button on your calculator until
you see a number which is less than or equal to 1. The number of times you pushed that button is

log*z. (Remember that log means base 2 logarithm.)

What is log™ of the number of people living on your street? What is log™ of the national debt, in

dollars? What is log™ of the number of atoms in the visible universe?

I have given you a few easy-to-understand methods, which are sufficient to solve many practical recurrences.
But there are recurrences whose solution requires more advanced methods, and some which have no closed

form solution.



