
Sorting

1 Introduction

The sorting problem is: given a sequence of n items from an ordered domain, permute the items into an

increasing sequence. Duplicates are permitted, so 2,3,3,5,6 is an increasing sequence. A sorting algorithm

is called coparison-based if each branch point of the algorithm is a comparison between two of the original

items. IfA is any comparison-based algorithm for sorting a sequence of length n, the number of comparisons

during an execution of A is at least log
2
n! ≈ n log

2
n in the worst case.1

For each of the sorting algorithm described below, we assume that we are given a sequence x1, x2, . . . xn.

2 Selection Sort

Let X be the set {x1, x2, . . . xn}. Pseudocode for selection sort:

For each i from 1 to n

Let yi be the smallest member of X . (Search step)

Delete yi from X .

The sequence y1, y2, . . . yn is the output. The time complexity of selection sort depends on how the search

step is implemented. If linear search is used, selection sort takes O(n2) time.

3 Insertion Sort

The traditional version is to maintain an ordered array A, which is initially empty. Here is the pseudocode:

For each i from 1 to n

Insert xi into A = {aj} such that A remains ordered.

A is the output.

Insertion of an item into an ordered array takes linear time. To insert an item x, traverse A until you find

an element aj ≥ x. Then:

For all k ≥ i in reverse order

ak+1 = ak

aj = x

This version of selection sort takes O(n2) time.

1That means, the worst case sequence of length n. For example, bubblesort is very fast in some cases, such as if the

sequence is already sorted, but is much slower in many other cases. The worst case time is defined to be the maximum time,

taken over all n! permutations of the input.
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4 Mergesort

Mergesort and quicksort are the two standard divide-and-conquer sorting algorithms. For each of these, the

data are divided into two smaller sequences, each of which is (recursively) sorted; the two sorted sequences

are then combined.

4.1 Merging

Suppose X = x1, . . . xn and Y = y1, . . . ym are ordered. We merge X and Y into an ordered sequence

Z = z1 . . . zn+m as follows:

i = 1

j = 1

For k from 1 to n+m

While i ≤ n and j ≤ m

If xi < yj

zk = xi

i++

Else

zk = yj

j ++

k ++

If j = m+ 1 copy the remaining items of X into Z

Else copy the remaining items of Y into Z

Z is the output.

We now give the pseudocode for mergesort of X = x1, . . . xn:

If n = 1, X is already sorted and we are done.

Else

X1 = x1 . . . xn/2

X2 = xn/2+1 . . . xn

Recursively sort X1, with output Y1

Recursively sort X2, with output Y2

Merge Y1 and Y2 with output Z

Z is the output.

The time complexity of mergesort is Θ(n log n).

4.2 Example Computation

ATIHESVL

ATIH ESVL

AT IH ES VL

AT HI ES LV

AHIT ELSV

AEHILSTV
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5 Quicksort

Pseudocode for quicksort. The input is a sequence X = x1 . . . xn.

If n ≤ 1, X is already sorted and we are done.

Else

Pick pivot ∈ X .

Partition X\{pivot} into two sets X1 and X2 such that

x ≤ pivot for all x ∈ X1

x ≥ pivot for all x ∈ X2

Recursively sort X1, with output Y1

Recursively sort X2, with output Y2

Z = Y1{pivot}Y2 (concatenation)

Z is the ouput.

5.1 Problems with Quicksort

The time complexity of quicksort is Ω(n log n), but is O(n2) in the worst case. In mergesort, the list is

divided into two nearly equal sublists, but in quicksort, with a bad pivot, they might not be even close

to equal. In the first version of quicksort that I read, the first item was chosen to be the pivot, which

makes the overall running time quadratic if the list is sorted. However it is chosen, the pivot must first

be swapped into the first position before partition begins. The ideal choice of the pivot is the iedian, but

finding that median deterministically takes so much time that quicksort would no longer be “quick.”

There are a number of stragies used in practice in an effort to avoid this problem. Here are some of them.

1. Pick the pivot to be the middle item in the array. This is very easy to do, and almost always leads

to O(n log n) time. In the C++ code given below, the middle item is chosen for the pivot.

2. Pick the the median of the first, last, and middle items in the array. This is a common suggestion,

but the improvement, if any, is slight.

3. Pick a random item as the pivot. Of course, your code is no longer deterministic. Most computers have

a built-in pseudo-random number generator. With this choice, the probability of taking quadratic

time is vanishingly small, and the expected time is Θ(n log n). Expected time can be decreased

somewhat by picking the pivot to be the median of three randomly chosen items.

4. Pick three random items, and let the pivot be the median of those three. This is slightly better than

picking a random pivot, but only by about 5% if the array is very large, and not at all better if the

array has length less than 3000.

5. Ignore the problem: just pick the first item. This is dangerous, since the array might already be

sorted, or almost sorted.
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C++ Code for Quicksort

Assume there is a given array A[n], for n >= 1, of some ordered type. We will assign int to be the type of

A.

void swap(int&x,int&y)

{

int temp = x;

x = y;

y = temp;

}

void quicksort(int first, int last) // input condition: first <= last

// sorts the subarray A[first .. last]

{

if(first < last) // otherwise there is only one entry

{

int mid = (first+last)/2;

swap(A[first],A[mid]);

int pivot = A[first];

int lo = first;

int hi = last;

// loop invariant holds

while(lo < hi) // the partition loop

{

// loop invariant holds

while(A[lo+1] < pivot)lo++;

while(A[hi] > pivot)hi--;

if(lo+1 < hi)

{

swap(A[lo+1],A[hi]);

lo++;

hi--;

}

else if(lo+1 == hi) hi--;

}

// loop invariant holds

swap(A[first],A[lo]);

// now A[lo] = pivot

if(first < lo) quicksort(first,lo-1);

if(lo+1 < last) quicksort(lo+1,last);

}

}
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int main()

{

quicksort(0,N-1);

cout << endl;

return 1;

}
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6 Polyphase Mergesort

Despite its name, polyphase mergesort is not a form of mergesort. In a sequence, we define a run to be

a maximal ordered subsequence. For example, the sequence AYUGWIBCESOPNF separated into runs is

AY U GW I BCDES OP N F.

The algorithm works as follows. In the first phase, deal the runs of the sequence out into two files.

We separate those files into runs, merge the first runs of the files 1 and 2, write into file 3, the second

runs of files 1 and 2 into file 4, the third The time complexity of polyphase mergesort is O(n log n).

Each phase takes Θ(n) time, and there are O(log n) phases, since, if there are at most k runs in each

file after a phase, there at most k/2 runs in each file after the next phase. For example starting with

ZKTUYWQFGPLARMXNJDK, we write to files f1 and f2 on odd-numbered phases and to f3 and f4 on

even-numbered phases.

first phase

f1: ZWFGPARNDK

f2: KTUYQLMXJ

second phase

f3: KTUYZFGLMPXN

f4: QWAJRDK

third phase

f1: KQTUWYZDKN

f2: AFGJLMPRX

fourth phase

f3: AFGJLMPRTUWXYZ

f4: DKN

fifth and last phase

f1: ADFGJKLMNPRTUWXYZ

f2: empty

7 Tree Sort

Tree sort is a fast form of insertion sort. We insert the items of X one at a time into a search structure, such

as a binary search tree, and then create an ordered array by traversing the search struction in alphabetic

order, which is inorder for a binary search tree.

Since a binary search tree has very bad worst case performance, the time complexity of tree sort quadratic

in the worst case. In order to guarantee O(n log n) time for tree sort, we must use a balanced binary search

tree, or some other choice of search structure where insertion takes O(log n) time. However, according to

Lipton, there is no need to worry about that in practice.

However, Lipton’s observation does not always hold in practice, as I discovered in my research. See below

for my solution.
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8 Treap Sort

This is the same as tree sort, except that we use a treap, which is a more sophisticated kind of binary search

tree. Construction of a treap requires generating random numbers, and in the worst case, treap sort takes

quadratic time. However, for a large example, the probability of that is comparable to the probability of

being hit by two asteroids simultaneously. In my research project, I used a treap to sort my data and the

speedup with quite noticeable.

9 Heap Sort

Heap sort is a sophisticated form of selection sort, and takes Θ(n log n) time. Although asymptotically

optimal, heapsort generally takes longer than other O(n log n)-time sorting algorithms.

The first phase, called heapify, is to place the items of X into a maxheap. The unsophisticated version

of heapify is to start with an empty heap and then insert the items one at a time. Each insertion takes

O(log n) time, and so this version of heapify takes O(n log n) time. However, there is a more sophisticaed

verson of heapify which takes Θ(n) time. As a consequence, the time of heapify is cut almost in half. I

call this method “bottom-up bubbledown.” Here is an example. As usual, we implement the heap as an

almost complete binary tree stored in an array in level order. Suppose our file is THJESYIFWZGPZBRN.

We simply start with an array containing those items, then execute bubbledown at each position, with

decreasing indices starting from the middle. Here are the steps of heapify. (Remember, it’s a maxheap.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T H J E S Y I F W Z G P X B R N

T H J E S Y I N W Z G P X B R F bubbledown(F)

T H J E S Y R N W Z G P X B I F bubbledown(I)

T H J E S Y R N W Z G P X B I F bubbledown(Y) nothing happens

T H J E Z Y R N W S G P X B I F bubbledown(S)

T H J W Z Y R N E S G P X B I F bubbledown(E)

T H Y W Z J R N E S G P X B I F bubbledown(J)

T H Y W Z X R N E S G P J B I F bubbledown(J), cont

T Z Y W H X R N E S G P J B I F bubbledown(H)

T Z Y W S X R N E H G P J B I F bubbledown(H), cont

Z T Y W S X R N E H G P J B I F bubbledown(T)

Z W Y T S X R N E H G P J B I F bubbledown(T), cont

Heap order is achieved.

The second, and longer, phase is the selection sequence. If we used the above example, it would be too

long, so I’ll start with something smaller.

During the second phase, the array has two parts. The left, shrinking, part, is the maxheap, while the

right, growing part (shown with bold letters) is the part already sorted. Each iteration consists of the swap

of the maximum item in position 1 to the item in the last position of the heap, followed by restoration of

heap order. The item that was in position 1 becomes the newest item in the sorted portion, which grows

by one. The heap is decremented. Then the item in position 1, which is out of place, bubbles down until
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heap order is restored.

After n iterations, the heap is empty and the sorted portion is the entire array.

1 2 3 4 5 6 7 8 9

H U B J E R P W Q

H U B W E R P J Q bubbledown(J)

H U R W E B P J Q bubbledown(B)

H W R U E B P J Q bubbledown(U)

W H R U E B P J Q bubbledown(H)

W U R H E B P J Q bubbledown(H), cont

W U R Q E B P J H bubbledown(H), cont

W U R Q E B P J H bubbledown(H) heap order

H U R Q E B P J W swap W and H

U H R Q E B P J W bubbledown(H)

U Q R H E B P J W bubbledown(H), cont

U Q R J E B P H W bubbledown(H), cont

H Q R J E B P U W swap U and H

R Q H J E B P U W bubbledown(H)

H Q P J E B R U W swap R and H

Q H P J E B R U W bubbledown(H)

Q J P H E B R U W bubbledown(H), cont

B J P H E Q R U W swap Q and B

P J B H E Q R U W bubbledown(B)

E J B H P Q R U W swap P and E

J E B H P Q R U W bubbledown E

J H B E P Q R U W bubbledown E, cont

E H B J P Q R U W swap E and J

H E B J P Q R U W bubbledown(E)

B E H J P Q R U W swap H and B

E B H J P Q R U W bubbledown(B)

B E H J P Q R U W swap E and B

B E H J P Q R U W sorted
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