
Strong Components of a Directed Graph

Our textbook, Algorithms by Dasgupta, Papadimitriou, and Vazirani, contains what I believe is an
important error on page 94, in the description of the algorithm for finding the strong components
of a directed graph G. I believe it should read:

1. Run depth-first search on GR, creating a list of the vertices in order of their post numbers.

2. Run depth first search onG, processing the vertices in decreasing order of their post numbers
from Phase 1.

3. The depth first search in Phase 2 consists of phases. A phase ends when there is no unvisited
out-neighbor of the current vertex. The vertices visited during each phase constitute one
strong component.

You can reverse these; use G in Phase 1 and GR in step 2. The strong components are exactly
the same, but created in a different order.

An Example

We will step through the algorithm for a directed graph G of twelve vertices shown below. We
use lower case letters a ...l for the names of the vertices.

a

b

e f

g h

i

jc

d kl

The reverse graph GR:

a

b

e f

g h

i

jc

d l k

1

We now execute Phase 1 of the algorithm. Each vertex is labeled with its pre amd post numbers.

a

b

e f

g h

i

jc

d l k

1,14

2,13

11,12

4,9 5,8

22,23

18,19 17,2015,24

6,7

3,10

16,21

At each postvisit, we append the name of the vertex to a list. The list of vertices in order of their
Phase 1 post number is g,f,e,c,d,b,a,k,j,i,l,h.

We now execute Phase 2, processing vertices in the reverse order of our list. (We do not actually
use the Phase 2 pre and post numbers, shown just to aid comprehension.)

a

b

e f

g h

i

jc

d kl
11,16 12,15 9,10

1,8 2,7 3,6

19,22 4,520,21

13,14
17,24 18,23

We show the stack at each step of Phase 2, where $ indicates the bottom of the stack. A component
is defined whenever the stack becomes empty, after which explore begins at the unvisited vertex
with the largest Phase 1 post number. Strong components are indicated in the figure.

$

$h

$hk

$hk

$hkj

$hkji

$hkj

$hk

$h

$ {h,k,j,i} is a strong component
$l

$ {l} is a strong component
$a

$ad

$adb

$ad

$a

$ {a,d,b} is a strong component
$c

$cg

$cgf

$cgfe

$cgf

$cg

$c

$ {c,g,f,e} is a strong component

2

An Example in Greater Detail

We now walk through a smaller example showing more steps. At each step the DFS stack is
shown in red. We use the alphabetic tie-breaker rule. Initially, the stack is empty.

ab
c

d e
f

Initial digraph G = (V,A). Vertices
are labeled a,b,c,d,e,f. When a vertex
is pushed onto the stack, it is given a
pre-number, and when it is popped it is
given a post-number.

1

ab
c

d e

f
The DFS stack is initialized at a, us-
ing the alphabetic rule. The vertex is
labeled with the pre-number 1.

1

ab
c

d
2

e
f

e, the alphabetically first out-neighbor
of a, is pushed, and labeled with the
pre-number 2. The stack is now ae.

1

ab
c

d
2

3

e
f f, the alphabetically first out-neighbor

of e, is pushed, and labeled with the
pre-number 2. The stack is now aef

1

ab
c

d
2

3,4 f

e
The top vertex f has no unvisited out-
neighbors, and hence is popped and
given the post-number 4.

1

ab
c

d

3,4

2,5

e
f

The top vertex e has no unvisited out-
neighbors, and hence is popped

ab
c

d

3,4

2,51,67

e
f

The top vertex a has no unvisited out-
neighbors, and hence is popped and
given the post-number 6. The stack is
empty. The alphabetically first unvis-
ited vertex, b is pushed and given the
pre-number 7. The stack is now b

3

1

ab
c

d
22,5

3,4

1,67

8

e
f The alphabetically first unvisited out-

neighbor of the top vertex b is pushed.
The stack is now bc.

1

ab
c

d
22,5

3,4

1,67

8

9

e
f The alphabetically first unvisited out-

neighbor d of the top vertex c is pushed and
given the pre-number 9. The stack is now
bcd.

1

ab
c

d
22,5

3,4

1,67

8

99,10

f
e

The top vertex d has no unvisited out-
neighbor, hence is popped and given the
post-number 10. The stack is now bc.

1

ab
c

d
22,5

3,4

1,67 99,10

8,11

e
f The top vertex c has no unvisited out-

neighbor, hence is popped and given the
post-number 11.

1

ab
c

d
22,5

3,4

1,67 99,10

8,11

7,12

e
f The top vertex b has no unvisited out-

neighbor, hence is popped and given
the post-number 12. The stack is now
empty.

ab
c

d

12

11

6 5

4

10

e
f

All arcs are inverted, and pre-numbers
are deleted. The second DFS phase
begins. Henceforth, “unvisited” means
unvisited during the second phase. The
vertex of highest post-number b is
pushed.

ab
c

d

12

11

6 5

4

10

e
f

The out-neighbor d of the top vertex b

of highest post-number is pushed. The
stack is now bd.

4

ab
c

d

12

11

6 5

4

10

e
f

The out-neighbor c of the top vertex d

of highest post-number is pushed. The
stack is now bdc.

ab
c

d
e

f

12

11

6 5

4

10

The top vertex c has no unvisited out-
neighbor. All vertices pushed onto the
stack since the last time it was empty
constitute a strong component, namely
b, c, and d. The stack is cleared, and
is now empty.

ab
c

d

12

11

6 5

4

10

e
f

The unvisited vertex of highest post-
number, namely a, is pushed. The stack
is now a

ab
c

d

12

11

6 5

4

10

e
f The top vertex a has no unvisited out-

neighbor. Only one vertex, namely a

was pushed since the last time the stack
was empty, so a is the sole element of a
strong component. The stack is emp-
tied.

ab
c

d

12

11

6 5

4

10

e
f

The stack is restarted by pusing the un-
visited node of heighest post-number,
namely e. The stack is now e.

ab
c

d

12

11

6 5

4

10

e
f

The out-neighbor f of the top vertex e

of highest post-number is pushed. The
stack is now ef.

5

ab
c

d

12

11

6 5

4

10

e
f The top vertex f has no unvisited out-

neighbor. The vertices e and f were
pushed since the last time the stack
was empty, so they constitute the final
strong component. The stack is emp-
tied.

ab
c

d ab
c

d ab
c

d
f

e
The arcs are inverted again. We
now show the original digraph with its
strong components.

6

