
University of Nevada, Las Vegas
Computer Science 477/677 Fall 2022
Answers to Final Examination December 15, 2022

Name:

No books, notes, scratch paper, or calculators. Use pen or pencil, any color. Use the rest of this page and the

backs of the pages for scratch paper. If you need more scratch paper, it will be provided.

The entire test is 480 points.

1. Fill in the blanks.

(i) [10 points] The following is pseudo-code for what algorithm?

selection sort

int x[n];

obtain values of x;

for(int i = n-1; i > 0; i++)

for(int j = 0; j < i; j++)

if(x[i] < x[j]) swap(x[i],x[j]);

(ii) [10 points] Dijkstra’s algorithm does not allow the weight of any arc to be negative.

(iii) [10 points] The time complexity of every comparison-based sorting algorithm is Ω(n log n) . (Your

answer should use Ω notation.)

(iv) [10 points] The prefix expression ∗a+ ∼ b ∗ −c d ∼ e is equivalent to the infix expression

a ∗ (−+ (c− d) ∗ −e) and the postfix expression ab ∼ cd− e ∼ ∗+ ∗

(v) [10 points] The items stored in a priority queue represent unfulfilled obligations.

(vi) [10 points] The asymptotic complexity of Dijkstra’s algorithm algorithm isO(m log n) orO(m logm)

(Either answer is correct, but O(n log n) is wrong. Also, use of Θ or Ω is wrong.)

(vii) [10 points] A perfect hash function fills the hash table exactly with no collisions.

(viii) [10 points] In open hashing there can be any number of items at a given index of the hash table.

(ix) [10 points] If the position at h(x) is already occupied for some data item x, a probe sequence is

used to find an unoccupied position in the hash table.

(x) [10 points] In cuckoo hashing, each item has more than one hash value, but only uses one of them.

(xi) [10 points] If G is a weighted directed graph, then it is impossible to solve the all pairs shortest

path problem for G if G has a negative weight cycle. (Just negative cycle is sufficient.)

(xii) [10 points] A planar graph with n vertices can have no more than 3n − 6 edges if n ≥ 3. (Exact

formula, please.)



2. Give the asymptotic complexity, in terms of n, of each of the following code fragments. [10 points each]

(a) for(int i = 2; i < n; i = i*i)

cout << "Hello world" << endl;

Θ(log log n)

(b) for(int i = 1; i < n; i++)

for(int j = 1; j < i; j = 2*j)

cout << "Hello world" << endl;

Θ(n log n)

(c) for(int i = 1; i*i < n; i++)

cout << "hello world" << endl;

Θ(
√
n)

(d) for(int i = 0; i < n; i++)

for(int j = n; j > i; j = j/2)

cout << "Hello world!" << endl;

Θ(n)

(e) for(int i = 1; i < n; i++)

for(int j = 2; j < i; j=j*j)

cout << "Hello world" << endl;

Θ(n log log n)

3. Solve the recurrences. Give the asymptotic value of F (n) in terms of n, using Θ notation. [10 points

each]

(a) F (n) = 4F
(

n

2

)

+ n

Θ(n2)

(b) F (n) ≥ F
(

n

2

)

+ 2F
(

n

4

)

+ n

F (n) = Ω(n log n)

(c) F (n) ≤ 2F (n/2) + n2

F (n) = O(n2)

(d) F (n) ≥ 3F (n/9) + 1

F (n) = Ω(
√
n)

(e) F (n) = F (3n/5) + 4F (2n/5) + n2

F (n) = Θ(n2 log n)

2



(f) F (n) ≤ 4F (n/2) + n2

F (n) = Θ(n2 log n)

(g) F (n) ≤ F (
√
n) + 1

F (n) = Θ(log log n)

4. [20 points] List properties of a good hash function used for a search structure.

(a) Deterministic,

(b) Appears randomized, or irrelevant to the actual data,

(c) Fast to compute.

5. [20 points] Find an optimal prefix code for the alphabet {A,B,C,D,E, F} where the frequencies are

given in the following array.

A 4 000

B 5 001

C 2 110

D 6 10

E 8 01

F 1 111

A B C FE

4 15

D

8

9

2 6

3

917

26

0

0 1

0

0

0 1

1 1

1

6. [20 points] Write pseudocode for the Floyd/Warshall algorithm.

Let the vertices be 1, 2, . . . n. Write W [i, j] for the weight of the edge from i to j, which is ∞ if there is

no such edge. The algorithm computes V [i, j], the least weight of any path from i to j, and back[i, j],

the backpointer of a least weight path from i to j.

for all i and j

{

V[i,j] = W[i,j]

back[i,j] = i

}

for all i

V[i,i] = 0

for all j

for all i

for all k

{

temp = V[i,j] + V[j,k]

if(temp < V[i,k])

3



{

V[i,k] = temp

back[i,k] = back[j,k]

}

}

7. [20 points] Use the DFS method to find the strong components of the digraph in the first figure below.

Show steps, using the second figure as needed.

d g

h ji

fe

ba c

fed g

h i j

a cb

d g

h ji

fe

ba c

1,10

(b)

2,9

3,4

5,8

6,7

19,20

(a)

(c) (d)

12,16

19,20

14,18

11,17

13,15
1,2

d g

h ji

fe

ba c

12,17

13,16

14,15

11,18

6,7

5,8

4,9

3,10

8. [20 points] What is the loop invariant of the loop in the following function?

x ∗ n = y ∗m+ z

float product(float x, int n)

{

float z = 0.0;

float y = x;

int m = n;

while(m > 0)

{

if(m%2) z = z+y;

m = m/2;

y = y+y;

}

return z;

}

4



9. [20 points] Write pseudocode for the Bellman-Ford algorithm. Be sure to include the shortcut that ends

the program when the final values have been found.

Assume there are m arcs, numbered from 0 to m− 1, and the kth arc is from s[k] to t[k] and has weight

w[k]. The vertices are numbers 0 . . . n − 1 and the source vertex is 0. For each vertex i, The algorithm

computes V [i], the minimum weight of a path from 0 to i, and the backpointer b[i] of that path. The

algorithm uses a shortcut.

V[0] = 0;

for(int i = 1; i < n; i++)

V[i] = infinity;

bool done = false;

while (not done)

{

done = true;

for(int k = 1

for(int k = 0; k < m; k++)

{

temp = V[s[k]] + w[k];

if(temp < V[t[k]])

{

V[t[k]] = temp;

done = false;

}

}

}

10. Consider the following C++ code.

int george(int n)

{

if(n == 0) return 1;

else return george(n/2)+george(n/2-1)+n*n;

}

(a) [10 points] What is the asymptotic complexity of george(n)?

G(n) = G(n/2) +G(n/2) + n2. Thus G(n) = Θ(n2).

(b) [10 points] What is the time complexity of the recursive code given above?

T (n) = T (n/2) + T (n/2) + 1. Thus T (n) = Θ(n).

(c) [10 points] What is the time complexity of a dynamic programming algorithm to compute george(n)?

G(0), G(1), G(2), . . . G(n) are computed, which takes Θ(n) time.

5



(d) [10 points] What is the space complexity of a computation of george(n) using memoization?

Θ(log n), since only values of george(n/2t) for t ≤ log
2
n are needed.

11. [20 points] Walk through mergesort with the array given below.

VJATNLDQMEFSPWGL

VJATNLDQ MEFSPWGL

VJAT NLDQ MEFS PWGL

VJ AT NL DQ ME FS PW GL

V J A T N L D Q M E F S P W G L

JV AT LN DQ EM FS PW GL

AJTV DLNQ EFMS GLPW

ADJLNQTV EFGLMPSW

ADEFGJLLMNPQSTVW

12. [20 points] Write pseudcode for the simple coin-row problem we discussed in class. Your are given a

row of n coins of various values. The problem is to select a set of coins of maximum total value, subject

to the condition that no two adjacent coins are selected. Your code should identify the coins which are

selected.

We will number the coins from 1 to n. Assume each coin has a positive value. Let X(i) be the value of

the ith coin. We call a subset of the coins legal if it contains no two adjacent coins. That is, it cannot

contain both the ith coin and the (i+1)st coin for any i. The goals is to find the legal subset of maximum

total value.

We can assume that any two consecutive coins of a legal subset are either 2 or 3 apart, since, if coins i

and i+ d are in the subset for d ≥ 4, we can insert the coin i+ 2 and increase the value of the subset.

The problem reduces to the problem of finding the maximum weight path in a weighted directed acyclic

graph (dag, for short) G, where the vertices are weighted (instead of the arcs). The set of vertices is

V = {1, 2, . . . n} where i has weight X(i), and the set of arcs is the set of all (i, j) where either j = i+2

or j = i+ 3.

Let W (i) be the weight of the maximum weight path in G which ends at i, for i ≥ 3, let B(i) be the

backpointer, the second to the last coin in that path. Our dynamic program computes both W and B.

W(1) = X(1)

W(2) = X(2)

W(3) = X(1)+X(3)

B(3) = 1

for i = 4 to n

6



{
if(W (i− 2) > W (i− 3))

B(i) = i− 2

else

B(i) = i− 3

W (i) = X(i) +W (B(i))

}
The maximum value of any legal subset is max(W (n),W (n−1)), and that subset can be recovered using

the backpointers.

13. [20 points] Write pseudocode for a function float power(float x, int n) that returns xn. You may

assume that x 6= 0, but your code must work for any integer n. It is not necessary to use the algorithm

given in class; use any algorithm that works.

We model our code on the code for multipication from Problem 8. We simply change addition to multi-

pication, and multiplication to exponentiation. The additive identity 0 is replaced by the multiplicative

identity 1. The loop invariant of the while loop is xn = ym ∗ z

float power(float x, int n)

{

if(n == 0) return 1;

else if(n < 0) return power(1/x,-n);

else

{

float z = 1.0;

float y = x;

int m = n;

while(m > 0)

{

if(m%2) z = z*y;

m = m/2;

y = y*y;

}

return z;

}

}

7



14. [20 points] The following code is used as a subroutine for both quicksort and select. Assume A[n] is an

array of integers. For simplicity, we assume that no two entries of A are equal. Write a loop invariant

for the while loop.

int pivot = A[0];

int lo = 0;

int hi = n-1;

while(lo < hi)

{

if(A[lo+1] < pivot) lo++;

else if(A[hi] > pivot) hi--;

else swap(A[lo+1],A[hi]);

}

The loop invariant is the conjuction of three statements:

lo ≤ hi and A[i] ≤ pivot for all 0 ≤ i ≤ lo and A[i] > pivot for all hi < i ≤ n.

8


