
University of Nevada, Las Vegas Computer Science 477/677 Fall 2024

Answers to Assignment 6: Due Saturday November 9, 2024

Overview of hashing from the internet: ”In the context of hash tables, ‘open hashing’ refers to a collision

resolution strategy where colliding elements are stored in separate linked lists outside the main hash table

array, while ‘closed hashing’ (also called open addressing) stores colliding elements within the array itself by

probing for an available slot when a collision occurs; essentially, open hashing uses external data structures to

handle collisions, while closed hashing uses the same array to store all elements, even if they collide.”

1. Solve these recurrences, expressing the answers using Θ notation.

These are all solved using the Akra–Brazzi method.

(a) F (n) = F (n/2) + 2F (n/4) + n

a1 = 1, b1 = 1
2
, a2 = 2, b2 = 1

4
, c = 1.

∑

i=1 2aib
c
i = 1, hence F (n) = Θ(n log n).

(b) F (n) = 2F (2n/3) + F (n/3) + n

a1 = 2, b1 = 2
3
, a2 = 1, b2 = 1

3
, c = 1.

∑

i=1 2aib
c
i = 5

3
> 1.

∑

i=1 2aib
2
i = 1, hence d = 2.

F (n) = Θ(n2).

(c) F (n) = 3F (n/2) + 3F (n/4) + n2

a1 = 3, b1 = 1
2
, a2 = 3, b2 = 1

4
, c = 2.

∑

i=1 2aib
c
i =

15
16

< 1, hence F (n) = Θ(n2).

(d) T (n) = T (7n/10) + T (n/5) + n

a1 = 1, b1 = 7
10
, a2 = 1, b2 = 1

5
, c = 1.

∑

i=1 2aib
c
i =

9
10

< 1, hence F (n) = Θ(n).

2. Walk throuth the A∗ algorithm for the following weighted graph, finding the least cost path from S to

T . The edge weights are in black and the heuristics are in red. The heuristics are both admissible and

consistent. In the figure below, each fully processed vertex is labeled with both f and g values, and

backpointers are shown. Values of g are shown in magenta (although it’s hard to see that color) and

values of f in green.
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3. The following recursive C++ program computes a function george(n) for a given integer n.

int george(int n)

{

if(n <= 1} return 1;

else

return george(n/2) + george(n/3) + george(n/6) + n;

}

You only want to compute george(n) for some n.

(a) What is the asymptotic complexity, in terms of n, of the value of george(n)?

Let george(n) = G(n). We have the recurrence G(n) = G(n/2) +G(n/3) +G(n/6) + n. Using the

Akra–Brazzi method, our solution is G(n) = Θ(n log n).

(b) What is the asymptotic complexity, in terms of n, of the time required to find george(n) using the

recursive program given above? (Hint: the answers to (a) and (b) are not the same.)

Let T (n) be the time required for the program to compute george(n). We have the currence

T (n) = T (n/2) + T (n/3) + T (n/6) + 1 since computation of n requires O(1) time. Solving that

recurrence, we have T (n) = Θ(n).

(c) What is the asymptotic complexity, in terms of n, of the time required to compute george(n) using

dynamic programming? That means, computing george(i) for all i from 0 to n in order.

It takes Θ(1) time to compute george(i) for each i. The total time complexity is thus Θ(n).

(d) What is the asymptotic complexity, in terms of n, of the time required to compute george(n) using

memoization? (Hint: how many intermediate values will be stored?)

This is the hardest of these four questions. The answer is Θ(log2 n). Here is the explanation. To

compute george(i) for any i, we must first have computed george(i/2), george(i/3), and george(i/6),

Thus, to compute george(n), we need to compute and store the values of george
( n

2i3j

)

for all pairs

(i,j) such that 2i3j <= n. How do we count those? Taking the logarithm of both sides, we obtain

the inequality i log 2+ j log 3 ≤ log n Both log 2 and log 3 are constant, and thus asymptotically we

have i+ j ≤ log n. Letting m = log n, we have i+ j ≤ m. Thus, the number of such pairs (i, j) is

(asymptotically)
∑m

i=0(m− i) ≈
m2

2
= Θ(m2) = Θ(log2 n).
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4. Figure (a) below illustrates a weighted directed graph. Figures (b) and (c) are copies. In Figure (c),

show the adusted arc weights needed to work Johnson’s algorithm. Use (b) for your intermediate work,

showing the non-positive values at the vertices. To avoid clutter, do not draw the zero-weight arcs from

s to the other vertices.

Do not finish Johnson’s algorithm.
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The figure below shows the original weighted digraph with the adjusted non-negative weights. The black

numerals are the original weights. The red numeral at each vertex is the minimum cost of a directed

path from s to that vertex. The zero-weight arcs from s to each other vertex are not shown. The blue

numerals are the adjusted weights of the arcs.
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5. Evaluate

(a)
log5 8

log5 4
=

3

2

(b)
log3 2

log3
(

1
2

) = −1

(c) log5 9 · log3 5 = 2

(d) log2
√
8 =

3

2

(e) 2log2
9−log

2
3 = 3

(f) 4log2
5 = 25

6. Insert the following items into a treap, in the order given. The priority of each item is given. Show all

the insertions and rotations. Your treap should use max-heap order. Your first seven steps are shown

below. In total, there should be 15 (or so) figures.
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Hashing

Here is a link to notes from a class on hashing at Carnegie Mellon University.

https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1004.pdf

And here are notes from a class on hashing at the Univerity of Washington.

https://courses.cs.washington.edu/courses/cse326/06su/lectures/lecture11.pdf

7. We are given a list of N = 6 data, each of which is a 3-letter name.

Bob

Ann

Sue

Ted

Van

Liz

We wish to store the data in a hash table. As explained on the CMU page, each name is converted into

a binary string by replacing each letter with the binary numeral of the order of that letter in the Roman

alphabet. These numerals are padded with zeros so that all have length 5, as shown in the table below.

For simplicity, our code is case-insensitive, so “Bob” is written “000100111100010”
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a 0 0 0 0 1

b 0 0 0 1 0

c 0 0 0 1 1

d 0 0 1 0 0

e 0 0 1 0 1

f 0 0 1 1 0

g 0 0 1 1 1

h 0 1 0 0 0

i 0 1 0 0 1

j 0 1 0 1 0

k 0 1 0 1 1

l 0 1 1 0 0

m 0 1 1 0 1

n 0 1 1 1 0

o 0 1 1 1 1

p 1 0 0 0 0

q 1 0 0 0 1

r 1 0 0 1 0

s 1 0 0 1 1

t 1 0 1 0 0

u 1 0 1 0 1

v 1 0 1 1 0

w 1 0 1 1 1

x 1 1 0 0 0

y 1 1 0 0 1

z 1 1 0 1 0

The encoding of each datum is a string of 15 bits. The spaces are just for readability.

bob = 00010 01111 00010

ann = 00001 01110 01110

sue = 10011 10101 00101

ted = 10100 00101 00100

van = 10110 00001 01110

liz = 01100 01001 11010

We let the size of our hash table be M = 8 = 23, and thus the hash value of each datum is a string of

three bits, which represents an integer in the range 0 . . .M − 1.

Therefore, our univeral hash function u must be a 3 × 15 matrix of bits, which I chose using a random

number generator.

1 1 0 1 0 0 0 0 0 1 1 0 1 0 1

0 1 0 0 1 0 0 1 0 1 0 1 0 1 1

1 1 1 1 1 0 1 1 0 1 0 1 1 1 0

The computation of the hash values of the data uses mod 2 matrix multiplication. The only constants

are 0 and 1, and 1+1 = 0.

Let u be the 3 × 15 universal hash function, let dat be the 15 matrix containing the encodings of the

data, and h the 3× 6 matrix giving the hash values of the data. Then u× dat = h, using mod 2 matrix

multiplication.

For example 101101× 110101 = 1 ∗ 1 + 0 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 % 2 = 1
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Here is the matrix multiplication used. To make it easier to check the matrix multiplication by hand, I

have left spaces.

11010 00001 10101

01001 00101 01011

11111 01101 01110

×

001110

000001

000111

101010

011000

001000

110001

111100

110000

101111

000001

010011

011110

110011

001000

=

011101

100010

100110

h(Bob) = 011 = 3

h(Ann) = 100 = 4

h(Sue) = 100 = 4

h(Ted) = 101 = 5

h(Van) = 011 = 3

h(Liz) = 100 = 4

The probability that a given pair of data will collide is
1

M
=

1

8
.

The number of pairs of data is

(

N

2

)

=
N(N − 1)

2
= 15 hence the expected number of collisions is

N(N − 1)

2M
=

15

8
. The number of actual collisions is 4, larger than expected, but not by much.
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