
The A∗ Algorithm

We walk through an example computation of the A∗ algorithm for solving the single pair minpath problem on

a weighted directed graph. The pair is (S, T ). The weight of an arc (x, y) is written w(x, y).

A D

B

F

K
C

G
T

P
S

5

3

4

14

9

6

7

8

35

10

9
8

24

15

9

15

13

0
17

22

18
2034

25

28

31

34

3236

5

6
6

E
H

RM

N

Figure 1: Example single pair minpath problem.

To work A∗, we must define a heuristic h(x) for each vertex x. h(x) must be less than or equal to the

minimum distance from x to T , and must also be consistent, that is, h(x) ≤ w(x, y) + h(y) for any arc (x, y).

The closer h(x) is to the true distance from x to T , the faster the A∗ algorithm will converge.

In Figure 1, a consistent heuristic is given, shown by red numerals.

Steps of A∗

Just as for Dijkstra’s algorithm, we maintain three sets of vertices: processed, partially processed, and unpro-

cessed. Initially there is no processed vertex and only S is partially processed. If x is processed or partialy

processed, g(x) is the shortest distance discovered so far from S to x. Value of g are indicted by blue numerals

in our figures. After each g(x) is computed, we let f(x) = g(x) + h(x). Values of f are indicated by green

numerals.

At each step, the vertex V with the minimum value of f is selected, and becomes fully processed. In the

figures, fully processed vertices are indicated by heavy circles. All outneighbors of V are updated, becoming

partially processed. An outneighbor which was already partially processed could possibly acquire a new,

smaller, value of g, hence a new value of f , and a new backpointer.

0

S A D

B

F

K
C

G
T

P

25

5

3

4

14

9

6

7

35

10

9
8

24

15

9

15

13

0
17

22

18
2034

25

28

31

34

3236

5

6
6

8
E

H

RM

N

Figure 2

In Figure 2, S is the only partially processed vertex. h(S) is given to be 25. g(S) = 0, hence f(x) = 25.

1



5

27

0
S D

B

F

K
C

G
T

P
A

5

3

95

10

9
8

15

9

13

0

18
20

2834

5

39

14

6

2225
15

17
7

3

8

2

3132
4

36

34

25
4

6
6

8
E

H

RM

N

Figure 3

In Figure 3, S becomes processed, as indicated by the darker circle. Its outneighbors A and H become

partially processed. Backpointers are indicated as red arrows.

5

27

11
28

9

29

0

S A D

B

F

K
C

G
T

P

3

95

10

9
8

24

15

9

13

0

18
34

28

31

34

3236

25

5
8

39

25
15

7

3

17

21

5

36

20

6
6

422

6
8

14H

M

N

R

E

Figure 4

In Figure 4 A becomes fully processed, while B, D, and E become partially processed.

5

27

28
17

30

11

9

29

0

D

B

F

K
C

G
T

P
AS

3

95

10

9
8

24

15

9

0

18
34

28

31

34

3236

25

5
8

39

42225
15

7

3

5

20

13

6

6

17

14

6

8
E

H

M

N

R

l

Figure 5

E becomes fully processed, while F becomes partially processed.

2



5

27

28

17

30

9

29
19

34

12

0

S D

B

F

K

G
T

P
A

C

95

10

9
8

24

15

0

34

28

31

34

3236

25

5
8

39

14
2225

15

7

3

17 13 9

6

6

4

6

11

20

8

3

18

530

E
H

RM

N

Figure 6

B becomes fully processed, while C becomes partially processed.

17

27

5

1128

30
17

23 32

12

9

32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

34

31

34

3236

25

5
8

39

14
2225

3

176

5

20

6
6

15

97

3
4

18

13

29 30

8

28

E
H

M

N

R

Figure 7

Now, C and F are fully processed. D acquires a new, smaller value of g, and its backpointer changes to C.

17
5

27

11

28
30

9

29

12

30

32 23

32

32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

18
34

28

31

34

3236

25

5
8

39

4
14

2225

7

3

176

5

20

13

6
6

9

3

15

3217

17

8
E

H

M

N

R

Figure 8

D and G become fully processed, while T becomes partially processed.

3



5

27

11
28

30

9

12

32

30

23
32

0

S A D

B

F

K
C

G
T

P

95

10

9
8

24

15

0

34

28

31

34

3236

25

5
8

39

4
14

2225
15

7

3

176

5

20

13

6
6

9

17

17

3

32
32

18

8
E

H

RM

N

Figure 9

It seems unnecessary, but the algorithm only stops when T becomes fully processed. Although not in this

example, it is possible that T would acquire a new backpointer after being partially processed for the first

time.

Wikipedia Page

There is a Wikipedia article at https://en.wikipedia.org/wiki/A*_search_algorithm titled “A∗ search

algorithm,” which covers the algorithm I’ve presented to you, as well as variations. In order to bring the

notation of this document into line with the notation in the Wikipedia page, I have exchanged f and g, so

that g(x) is the length of shortest known path from x to T , and f(x) = g(x) + h(x). That document also uses

“open” to describe partially processed vertices, and the backpointer of a vertex x points to the “predecessor”

of x. There is other notation you should be able to figure out. The figures in this document have not been

altered: a blue numeral now represents g(x), and a green numeral f(x).

4


