Computer Science 477/677 Spring 2019

University of Nevada, Las Vegas Computer Science 477/677 Spring 2019 Answers for Practice for Second Examination March 13, 2019

- 1. Review Assignment 3.
- 2. Construct a treap with alphabetic key and numeric min-heap order. You are to insert the items one at a time and show the treap after each rotation. Insert letters in this order: A, B, C, D, E, F. The numeric heap keys (the random numbers) are given in the following table.

A	23
B	12
C	11
D	7
E	4
F	1

- 3. Find the asymptotic complexity, in terms of n, for each of these fragments, expressing the answers using O, Θ , or Ω , whichever is most appropriate.
 - (a) for(i = 0; i < n; i = i+1); cout << "Hi!" << endl; Θ(n)
 - (b) for(i = 1; i < n; i = 2*i);

```
cout << "Hi!" << endl;</pre>
```

This reduces to Problem 3a Substitute $j = \log_2 i$, $m = \log_2 n$. Taking the base 2 logarithm of all the variables of 3b, and substituting, we obtain

for(log i = log 1; log i < log n; log i = log i + 1)
for(j = 0; j < m; j = j+1)</pre>

Which is 3a. The solution is $\Theta(m) = \Theta(\log n)$.

(c) for(i = 2; i < n; i = i*i);

cout << "Hi!" << endl;</pre>

This reduces to Problem 3b Substitute $j = \log_2 i$, $m = \log_2 n$. Taking the base 2 logarithm of all the variables of 3b, and substituting, we obtain

for(log i = log 2; log i < log n; log i = log (i*i))
for(log i = log 2; log i < log n; log i = 2*log i)
for(j = 1; j < m; j = 2*j)</pre>

Which is 3b. The solution is $\Theta(\log m) = \Theta(\log \log n)$.

(d) The following code models the first phase of heapsort.

for(int i = n; i > 0; i--)
for(int j = i; 2*j <= n; j = 2*j)
cout << "swap" << endl;</pre>

 $\Theta(n)$

(e) The following code models the second phase of heapsort.

```
for(int i = n; i > 0; i--}
{
    cout << "swap" << endl;
    for(int j = 1; 2*j <= i; j = 2*j)
        cout << "swap" << endl;
    }
    cout << "swap" << endl;
}</pre>
```

 $\Theta(n\log n)$

(f) The following code models insertion of n items into an AVL tree.

```
for(int i = 1; i < n; i++)
for(int j = n; j > 0; j = j/2)
cout << "check AVL property and possibly rotate" << endl;
\Theta(n \log n)
```

- 4. Solve each of the following recurrences, expressing the answers using O, Θ , or Ω , whichever is most appropriate.
 - (a) F(n) = F(n/2) + 1 $\Theta(\log n)$ by the master theorem
 - (b) $F(n) = F(n-1) + O(\log n)$ $\Theta(n \log n)$ by the anti-derivative method
 - (c) For this problem, as well as the next one, see

https://en.wikipedia.org/wiki/Akra%E2%80%93Bazzi_method#Example $F(n) = F\left(\frac{n}{2}\right) + 2F\left(\frac{n}{4}\right) + n$ $C = 1 \text{ and } \left(\frac{1}{2}\right)^{C} + 2\left(\frac{1}{4}\right)^{C} = 1 \text{ and therefore the complexity is } \Theta(n \log n).$ (d) $F(n) = F\left(\frac{3n}{5}\right) + F\left(\frac{4n}{5}\right) + n^{2}$ $C = 2 \text{ and } \left(\frac{3}{5}\right)^{C} + \left(\frac{4}{5}\right)^{C} = 1 \text{ and therefore the time complexity is } \Theta(n^{2} \log n)$ (e) F(n) = F(n-2) + n

 $\Theta(n^2)$ by the anti-derivative method

5. Use Huffman's algorithm to construct an optimal prefix code for the alphabet $\{A, B, C, D, E, F\}$ where the frequencies of the symbols are given by the following table.

A	7	
B	3	
C	4	
D	8	
E	12	
F	3	

6. G is an acyclic directed graph with vertices $\{s, a, b, c, d\}$. G has exactly five topological orderings, namely

s,a,b,c,d	There is more than one answer.
s,a,b,d,c	Some arcs must exist, some arcs
s,a,d,b,c	must not exist, and some arcs
s,b,a,c,d	are optional. Optional arcs are
s,b,a,d,c	shown as dashed arrows.

7. Find a minimum spanning tree of the weighted graph shown below.

Use union/find, with path compression.

- 8. Insert the letters A, B, C, D, E, F into an AVL tree in that order. Show the rotations (if any) after each insertion.
- 9. Write pseudo-code for binary search.
- 10. Walk through heapsort for the following array: A Q R B X S M L N T

1	2	3	4	5	6	7	8	9	10
Α	Q	R	В	Х	S	Μ	L	Ν	Т
Α	Q	R	Ν	Х	S	Μ	L	В	Т
Α	Q	S	Ν	Х	R	Μ	L	В	Т
Α	Х	S	Ν	Q	R	Μ	L	В	Т
Α	X	S	Ν	Т	R	Μ	L	В	Q
X	Α	S	Ν	Т	R	Μ	L	В	Q
Х	Т	S	Ν	Α	R	Μ	L	В	Q
X	Т	S	Ν	Q	R	Μ	L	В	Α
Α	Т	S	Ν	Q	R	Μ	L	В	х
Т	Α	S	Ν	Q	R	Μ	L	В	х
Т	Q	S	Ν	Α	R	Μ	L	В	х
В	Q	S	Ν	Α	R	Μ	L	т	х
S	Q	В	Ν	Α	R	Μ	L	т	х
S	Q	R	Ν	Α	В	Μ	L	Т	х
L	Q	R	Ν	Α	В	Μ	S	т	х
R	Q	L	Ν	Α	В	Μ	S	Т	х
R	Q	Μ	Ν	Α	В	L	S	т	х
L	Q	Μ	Ν	Α	В	R	S	т	х
Q	L	Μ	Ν	Α	В	R	s	Т	х
Q	Ν	М	L	Α	В	R	S	т	х
В	N	Μ	L	Α	Q	R	S	Т	х
N	L	Μ	В	Α	Q	R	S	т	х
Α	L	Μ	В	N	Q	R	S	Т	х
M	L	A	В	N	Q	R	\mathbf{S}	Т	х
В	L	A	M	N	Q	R	\mathbf{S}	Т	х
L	В	A	M	N	Q	R	\mathbf{S}	Т	х
A	В	L	M	N	\mathbf{Q}	R	\mathbf{S}	Т	х
В	Α	L	Μ	Ν	Q	R	s	Т	х
A	в	L	M	N	Q	R	S	Т	X

Items which are done are shown in **boldface**.