Computer Science 477/677 Spring 2019

University of Nevada, Las Vegas Computer Science 477/677 Spring 2019

Answers for Practice for Second Examination March 13, 2019

1. Review Assignment 3.
2. Construct a treap with alphabetic key and numeric min-heap order. You are to insert the items one at a time and show the treap after each rotation. Insert letters in this order: A, B, C, D, E, F. The numeric heap keys (the random numbers) are given in the following table.

A	23
B	12
C	11
D	7
E	4
F	1

3. Find the asymptotic complexity, in terms of n, for each of these fragments, expressing the answers using O, Θ, or Ω, whichever is most appropriate.
(a) $\operatorname{for}(\mathrm{i}=0 ; i<n ; i=i+1)$; cout << "Hi!" << endl;
$\Theta(n)$
(b) $\operatorname{for}(i=1 ; i<n ; i=2 * i)$;
cout << "Hi!" << endl;
This reduces to Problem 3a Substitute $j=\log _{2} i, m=\log _{2} n$. Taking the base 2 logarithm of all the variables of 3 b , and substituting, we obtain
for $(\log i=\log 1 ; \log i<\log n ; \log i=\log i+1)$
for $(j=0 ; j<m ; j=j+1)$
Which is 3a. The solution is $\Theta(m)=\Theta(\log n)$.
(c) $\operatorname{for}(i=2 ; i<n ; i=i * i) ;$
cout << "Hi!" << endl;
This reduces to Problem 3b Substitute $j=\log _{2} i, m=\log _{2} n$. Taking the base 2 logarithm of all the variables of 3 b , and substituting, we obtain
```
for(log i = log 2; log i < log n; log i = log (i*i))
for(log i = log 2; log i < log n; log i = 2*log i)
for(j = 1; j < m; j = 2*j)
```

Which is 3 b . The solution is $\Theta(\log m)=\Theta(\log \log n)$.
(d) The following code models the first phase of heapsort.

```
for(int i = n; i > 0; i--)
    for(int j = i; 2*j <= n; j = 2*j)
        cout << "swap" << endl;
```

$\Theta(n)$
(e) The following code models the second phase of heapsort.

```
for(int i = n; i > 0; i--}
    {
        cout << "swap" << endl;
        for(int j = 1; 2*j <= i; j = 2*j)
        cout << "swap" << endl;
    }
\Theta(n log}n
```

(f) The following code models insertion of n items into an AVL tree.

```
for(int i = 1; i < n; i++)
    for(int j = n; j > 0; j = j/2)
        cout << "check AVL property and possibly rotate" << endl;
\Theta(n log}n
```

4. Solve each of the following recurrences, expressing the answers using O, Θ, or Ω, whichever is most appropriate.
(a) $F(n)=F(n / 2)+1$
$\Theta(\log n)$ by the master theorem
(b) $F(n)=F(n-1)+O(\log n)$
$\Theta(n \log n)$ by the anti-derivative method
(c) For this problem, as well as the next one, see
https://en.wikipedia.org/wiki/Akra\�\�\�Bazzi_method\#Example
$F(n)=F\left(\frac{n}{2}\right)+2 F\left(\frac{n}{4}\right)+n$
$C=1$ and $\left(\frac{1}{2}\right)^{C}+2\left(\frac{1}{4}\right)^{C}=1$ and therefore the complexity is $\Theta(n \log n)$.
(d) $F(n)=F\left(\frac{3 n}{5}\right)+F\left(\frac{4 n}{5}\right)+n^{2}$
$C=2$ and $\left(\frac{3}{5}\right)^{C}+\left(\frac{4}{5}\right)^{C}=1$ and therefore the time complexity is $\Theta\left(n^{2} \log n\right)$
(e) $F(n)=F(n-2)+n$
$\Theta\left(n^{2}\right)$ by the anti-derivative method
5. Use Huffman's algorithm to construct an optimal prefix code for the alphabet $\{A, B, C, D, E, F\}$ where the frequencies of the symbols are given by the following table.

A	7
B	3
C	4
D	8
E	12
F	3

6. G is an acyclic directed graph with vertices $\{s, a, b, c, d\}$. G has exactly five topological orderings, namely

s, a, b, c, d	There is more than one answer.
s, a, b, d, c	Some arcs must exist, some arcs
s, a, d, b, c	must not exist, and some arcs
s, b, a, c, d	are optional. Optional arcs are
s, b, a, d, c	shown as dashed arrows.

7. Find a minimum spanning tree of the weighted graph shown below.

Use union/find, with path compression.
8. Insert the letters A, B, C, D, E, F into an AVL tree in that order. Show the rotations (if any) after each insertion.
9. Write pseudo-code for binary search.
10. Walk through heapsort for the following array: A Q R B S MLNT

Items which are done are shown in boldface.

1	2	3	4	5	6	7	8	9	10
A	Q	R	B	X	S	M	L	N	T
A	Q	R	N	X	S	M	L	B	T
A	Q	S	N	X	R	M	L	B	T
A	X	S	N	Q	R	M	L	B	T
A	X	S	N	T	R	M	L	B	Q
X	A	S	N	T	R	M	L	B	Q
X	T	S	N	A	R	M	L	B	Q
X	T	S	N	Q	R	M	L	B	A
A	T	S	N	Q	R	M	L	B	X
T	A	S	N	Q	R	M	L	B	X
T	Q	S	N	A	R	M	L	B	X
B	Q	S	N	A	R	M	L	T	X
S	Q	B	N	A	R	M	L	T	X
S	Q	R	N	A	B	M	L	T	X
L	Q	R	N	A	B	M	S	T	X
R	Q	L	N	A	B	M	S	T	X
R	Q	M	N	A	B	L	S	T	X
L	Q	M	N	A	B	R	S	T	X
Q	L	M	N	A	B	R	S	T	X
Q	N	M	L	A	B	R	S	T	X
B	N	M	L	A	Q	R	S	T	X
N	L	M	B	A	Q	R	S	T	X
A	L	M	B	N	Q	R	S	T	X
M	L	A	B	N	Q	R	S	T	X
B	L	A	M	N	Q	R	S	T	X
L	B	A	M	N	Q	R	S	T	X
A	B	L	M	N	Q	R	S	T	X
B	A	L	M	N	Q	R	S	T	X
A	B	L	M	N	Q	R	S	T	X

