University of Nevada, Las Vegas Computer Science 477/677 Fall 2019 Answers to Assignment 1: Due Wednesday August 28, 2019

1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω. Θ in the blank.
(a) $n-100=\Theta(n-200)$
(b) $n^{1 / 2}=O\left(n^{2 / 3}\right)$
(c) $100 n+\log n=\Theta\left(n+\log ^{2} n\right)$
(d) $n \log n=\Theta(10 n \log (10 n))$
$n \log n=\Omega(10 n+\log (10 n))$
(e) $\log (2 n)=\Theta(\log (3 n))$
(f) $10 \log n=\Theta\left(\log \left(n^{2}\right)\right)$
(g) $n^{1.01}=\Omega\left(n \log ^{2} n\right)$
(h) $n^{2} / \log n=\Omega\left(n \log ^{2} n\right)$
(i) $n^{0.1}=\Omega\left(\log ^{2} n\right)$
(j) $(\log n)^{\log n}=\Omega(n / \log n)$
(k) $\sqrt{n}=\Omega\left(\log ^{3} n\right)$
(l) $n^{1 / 2}=O\left(5^{\log _{2} n}\right)$
(m) $n 2^{n}=O\left(3^{n}\right)$
(n) $2^{n}=\Theta\left(2^{n+1}\right)$
(o) $n!=\Omega\left(2^{n}\right)$
(p) $\log n^{\log n}=O\left(2^{\left(\log _{2} n\right)^{2}}\right)$ [hard]
(q) $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$
2. Work problem $0.3(\mathrm{c})$ on page 9 of the textbook.
$F_{n}=F_{n-1}+F_{n-2}$ We start by assuming $F_{n}=2^{n C}$ for some C. This is false, but its almost true, that is

$$
\lim _{n \rightarrow \infty} \frac{F_{n}}{2^{n C}}=1
$$

for the correct value of C. Making that assumption:

$$
\begin{aligned}
F_{n+2} & =F_{n+1}+F_{n} \\
2^{C(n+2)} & =2^{C(n+1)}+2^{C n}
\end{aligned}
$$

Divide both sides by $2^{C n}: 2^{2 C}=2^{C}+2^{0}$

$$
\text { Substitute } x=2^{C}: x^{2}=x+1
$$

By the quadratic formula, since $2^{C}>0: x=\frac{1+\sqrt{ } 5}{2}$ the golden ratio!

$$
C=\log _{2}\left(\frac{1+\sqrt{ } 5}{2}\right)
$$

3. For any positive integer input, say n, the second column is a string of bits. What does that bitstring represent?

The binary numeral for n , written in reverse.
4. Each of these code fragments takes $O(n \log n)$.time, but not necessarily $\Theta(n \log n)$. Give the asymptotic complexity of each in terms of n, using Θ in each case.

```
(a) for(int i = 1; i < n; i++)
    for(int j = 1; j < i; j = 2*j);
        cout << "Hello" << endl;
    \Theta(n log}n
(b) for(int i = 1; i < n; i++)
            for(int j = i; j < n; j = 2*j);
        cout << "Hello" << endl;
    \Theta(n)
(c) for(int i = 1; i < n; i=2*i)
            for(int j = 1; j < i; j++);
        cout << "Hello" << endl;
    \Theta(n)
(d) for(int i = 1; i < n; i=2*i)
            for(int j = i; j < n; j++);
        cout << "Hello" << endl;
    \Theta(n log}n
(e) for(int i = n; i > 1; i=i/2)
        for(int j = i; j > 1; j--);
        cout << "Hello" << endl;
    \Theta(n)
(f) for(int i = n; i > 1; i=i/2)
        for(int j = n; j > i; j--);
        cout << "Hello" << endl;
        \Theta(n\operatorname{log}n)
```

5. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in terms of n, using Θ.
```
(g) for(int i = 1; i < n; i=2*i)
    for(int j = 1; j < i; j=2*j);
        cout << "Hello" << endl;
```

 Hint: Use substitution. Let \(m=\log n, k=\log i, l=\log j\).
 for (int $k=0 ; k<m ; k++)$
for (int l = 0 ; l $<\mathrm{k}$; l++)
cout << "Hello" << endl;
$\Theta\left(m^{2}\right)=\Theta\left(\log ^{2} n\right)$
(h) for (int $i=2$; $i<n ; i=i * i)$ cout << "Hello" << endl;

Hint: Use substitution. Let $\mathrm{m}=\log \mathrm{n}, \mathrm{k}=\log \mathrm{i}$.
for (int k = 1; k < m; k=2*k) cout << "Hello" << endl;
$\Theta(\log m)=\Theta(\log \log n)$
(i) for (int $i=2$; $i<n$; $i=i * i)$ for (int $j=1 ; ~ j<i ; j=2 * j)$ cout << "Hello" << endl;

Hint: Use substitution. Let $m=\log n, k=\log i, l=\log j$.
for (int $k=1 ; k<m ; k=2 * k)$ for (int l $=0$; $1<k$; l++
$\Theta(m)=\Theta(\log n)$
(j) for (int $i=n$; i >1; $i=\log i)$ cout << "Hello" << endl;
Hint: The answer is a function you've possibly never heard of. That function is defined on page 136 of the textbook. I will simply tell you the answer, and you will need to remember it.
$\Theta\left(\log ^{\star} n\right)$

