
University of Nevada, Las Vegas Computer Science 477/677 Fall 2019

Answers to Assignment 1: Due Wednesday August 28, 2019

1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω. Θ in the blank.

(a) n− 100 = Θ(n− 200)

(b) n1/2 = O(n2/3)

(c) 100n+ log n = Θ(n+ log2 n)

(d) n log n = Θ(10n log(10n))

n log n = Ω(10n+ log(10n))

(e) log(2n) = Θ(log(3n))

(f) 10 log n = Θ(log(n2))

(g) n1.01 = Ω(n log2 n)

(h) n2/ log n = Ω(n log2 n)

(i) n0.1 = Ω(log2 n)

(j) (log n)logn = Ω(n/ log n)

(k)
√

n = Ω(log3 n)

(l) n1/2 = O(5log2n)

(m) n2n = O(3n)

(n) 2n = Θ(2n+1)

(o) n! = Ω(2n)

(p) log nlogn = O(2(log2
n)2) [hard]

(q)
∑n

i=1 i
k = Θ(nk+1)

2. Work problem 0.3(c) on page 9 of the textbook.

Fn = Fn−1+Fn−2 We start by assuming Fn = 2nC for some C. This is false, but its almost true, that is

lim
n→∞

Fn

2nC
= 1

for the correct value of C. Making that assumption:

Fn+2 = Fn+1 + Fn

2C(n+2) = 2C(n+1) + 2Cn

Divide both sides by 2Cn : 22C = 2C + 20

Substitute x = 2C : x2 = x+ 1

By the quadratic formula, since 2C > 0 : x =
1 +

√

5

2
the golden ratio!

C = log
2

(

1 +
√

5

2

)



3. For any positive integer input, say n, the second column is a string of bits. What does that bitstring

represent?

The binary numeral for n, written in reverse.

4. Each of these code fragments takes O(n log n).time, but not necessarily Θ(n log n). Give the asymptotic

complexity of each in terms of n, using Θ in each case.

(a) for(int i = 1; i < n; i++)

for(int j = 1; j < i; j = 2*j);

cout << "Hello" << endl;

Θ(n log n)

(b) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j);

cout << "Hello" << endl;

Θ(n)

(c) for(int i = 1; i < n; i=2*i)

for(int j = 1; j < i; j++);

cout << "Hello" << endl;

Θ(n)

(d) for(int i = 1; i < n; i=2*i)

for(int j = i; j < n; j++);

cout << "Hello" << endl;

Θ(n log n)

(e) for(int i = n; i > 1; i=i/2)

for(int j = i; j > 1; j--);

cout << "Hello" << endl;

Θ(n)

(f) for(int i = n; i > 1; i=i/2)

for(int j = n; j > i; j--);

cout << "Hello" << endl;

Θ(n log n)

5. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in

terms of n, using Θ.

(g) for(int i = 1; i < n; i=2*i)

for(int j = 1; j < i; j=2*j);

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i, l = log j.

for(int k = 0; k < m; k++)

for(int l = 0; l < k; l++)

cout << "Hello" << endl;

Θ(m2) = Θ(log2 n)

2



(h) for(int i = 2; i < n; i=i*i)

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i.

for(int k = 1; k < m; k=2*k)

cout << "Hello" << endl;

Θ(logm) = Θ(log log n)

(i) for(int i = 2; i < n; i=i*i)

for(int j = 1; j < i; j = 2*j)

cout << "Hello" << endl;

Hint: Use substitution. Let m = log n, k = log i, l = log j.

for(int k = 1; k < m; k=2*k)

for(int l = 0; l < k; l++

Θ(m) = Θ(log n)

(j) for(int i = n; i > 1; i = log i)

cout << "Hello" << endl;

Hint: The answer is a function you’ve possibly never heard of. That function is defined on page

136 of the textbook. I will simply tell you the answer, and you will need to remember it.

Θ(log⋆ n)

3


