University of Nevada, Las Vegas Computer Science 477/677 Spring 2020

Answers to Assignment 2: Due Tuesday February 11, 2020

1. Work problem 2.5 on page 71 of the texctbook. Do not replace any transcendental constant with a decimal. For example " $\log _{2} 3$ " should be left as is, but " $\log _{2} 4$ " should be written as 2 .
(a) $T(n)=2 T(n / 3)+1$
$T(n)=\Theta\left(n^{\log _{3} 2}\right)$
(b) $T(n)=5 T(n / 4)+n$
$T(n)=\Theta\left(n^{\log _{4} 5}\right)$
(c) $T(n)=7 T(n / 7)+n$
$T(n)=\Theta(n \log n)$
(d) $T(n)=9 T(n / 3)+n^{2}$
$T(n)=\Theta\left(n^{2} \log n\right)$
(e) $T(n)=8 T(n / 2)+n^{3}$
$T(n)=\Theta\left(n^{3} \log n\right)$
(f) $T(n)=49 T(n / 25)+n^{3 / 2} \log n$
$T(n)=\Theta\left(n^{3 / 2} \log n\right)$
(g) $T(n)=T(n-1)+2$
$T(n)=\Theta(n)$
(h) $T(n)=T(n-1)+n^{c}$ where $c \geq 1$ is a constant.
$T(n)=\Theta\left(n^{c+1}\right)$
(i) $T(n)=T(n-1)+c^{n}$ where $c>1$ is a constant.
$T(n)=\Theta\left(c^{n}\right)$
(j) $T(n)=2 T(n-1)+1$ Work this one by substitution. Let $F(m)=T\left(\log _{2} m\right)=T(n)$. Then $T(n-1)-T\left(\log _{2} m-1\right)=T\left(\log _{2}(m / 2)\right)=F(m / 2)$

Substituting, we have $F(m)=2 F(m / 2)+1$. Thus

$$
T(n)=F(m)=\Theta(m)=\Theta\left(2^{n}\right)
$$

(k) $T(n)=T(\sqrt{ } n)+1$ Use substitution: $m=\log _{2} n$,

Substituting $T(n)=F(m)=F(\log n)$ and $F(m)=F(m / 2)+1$ Thus

$$
T(n)=F(m)=\Theta(\log m)=\Theta(\log \log n)
$$

2. Work problem 2.4 on page 71 of the textbook.

Algorithm C takes $\Theta\left(n^{2} \log n\right)$ time, which is faster than the others.
3. Problem 2.12 on page 73 of the textbook.
$T(n)=2 T(n / 2)+1$.
$T(n)=\Theta(n)$

