University of Nevada, Las Vegas Computer Science 477/677 Spring 2020
 Answers to Assignment 3: Due Thursday February 20, 2020

1. Give the asymptotic time complexity in terms of n, using Θ, O, or Ω, whichever is most appropriate.
(a) $F(n) \geq F(n-\sqrt{ } n)+n^{2}$
$F(n)-\sqrt{ } n \geq n^{2}$
$\frac{F(n)-\sqrt{ } n}{\sqrt{ } n} \geq n^{3 / 2}$
$F^{\prime}(n)=\Omega\left(n^{3 / 2}\right)$
$F(n)=\Omega\left(n^{5 / 2}\right.$
(b) $H(n)<H(n / 3)+H(n / 4)+2 H(n / 5)+n$

Since $\frac{1}{3}+\frac{1}{4}+2 \cdot \frac{1}{5}<1$
$H(n)=O(n)$
(c) $G(n)=3(G(2 n / 3)+G(n / 3))+5 n^{2}$

Since $3\left(\frac{2}{3}\right)^{3}+3\left(\frac{1}{3}\right)^{3}=1$ and $3>2$
$G(n)=\Theta\left(n^{3}\right)$
2. For each of these recursive subprograms, write a recurrence for the time complexity, then solve that recurrence.
(a) void george (int n)
\{if(n > 0)

```
        {for(int i = 0; i < n; i++) cout << "hello" << endl;
```

 george(n/2); george(n/3); george(n/6);\}\}
 $G(n)=G\left(\frac{n}{2}\right)+G\left(\frac{n}{3}\right)+G\left(\frac{n}{6}\right)+n$
Since $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1$
$G(n)=\Theta(n \log n)$
(b) void martha(int n)
\{if ($n>1$)
\{martha(n-1); martha(n-2):\}\}
Hint: Look at problem 0.3 on page 9 of your textbook.
$M(n)=M(n-1)+M(n-2)+1$
We start by assuming that M is an exponential function. We assume $M(n)=c^{n}$ for some constant c.

Substituting: $c^{n}=c^{n-1}+c^{n-2}$
Dividing both sides by c^{n-2} we obtain $c^{2}=c+1$ which is a quadratic equation. Thus $c=\frac{1+\sqrt{ } 5}{2}$. Hence
$M(n)=\Theta\left(\left(\frac{1+\sqrt{ } 5}{2}\right)^{n}\right)$ (Note that $\frac{1+\sqrt{ } 5}{2}$ is the golden ratio.)
3. The following function computes $a b$ for positive integers a and b. The loop invariant for this code is

```
p+cd=ab.
int product(int a, int b)
    {
    int c = a;
    int d = b;
    int p = 0;
    while(d > 0)
        {
            if(d % 2) p = p+c;
            c = c+c;
            d = d/2;
        }
    return p;
}
```

The following function computes x^{b} for a real number x and a positive integer b. What is its loop invariant?

```
Answer: zy }\mp@subsup{}{}{d}=\mp@subsup{x}{}{b
float power(float x, int b)
    {
        float y = x;
        int d = b;
        float z = 1.0;
        // loop invariant holds here
    while(d > 0)
        {
    // loop invariant holds here
        if(d % 2) z = z*y;
        y = y*y;
        d = d/2;
    // loop invariant holds here
        }
    // loop invariant holds here
    return z;
}
```

4. Consider the following program, where n is a given constant.
```
int A[n];
int B[n];
void getA()
    {
    for(int i = 0; i < n; i++) cin >> A[i];
}
int main()
{
    getA();
    int s = 0;
    int i = 0;
    // initialially: numcredit = 2*n;
    // Loop invariant: numcredit = 2*n-2*i+s. Holds here since s = i = 0.
    while(i < n) // beginning of outer loop
            {
                // numcredit = 2*n-2i+s Not yet paid for this iteration of the outer loop
                while(s > 0 and B[s-1] > A[i]) // beginning of inner loop
                {
                    s--;
                    // we chage one credit for this iteration of the inner loop.
                    // and numcredit 2n-2i+s is decremented to pay for it.
                }
            B[s] = A[i];
            s++;
            i++;
            // We charge one credit for this iteration of the outer loop.
            // Since i and s are both incremented, numcredit = 2n-2i+s
            // is decreased by 1, which pays for the iteration.
        } // end of outer loop
    for(int j = 0; j < s; j++) cout << B[j];
    cout << endl;
    return 1;
}
```

(a) If $n=10$ and the input stream is 0698132547 what is the output? Ans: 01247
(b) The inner and outer loops are both linearly bounded, and thus the time complexity of the code is $O\left(n^{2}\right)$. But, it is not $\Theta\left(n^{2}\right)$. Use amortization to prove that the time complexity is $\Theta(n)$.

We will charge one credit each time the outer loop iterates, and one credit each time the inner loop iterates. We initially allocate 2 n credits, and use one credit for each iteration. We then need to have at least zero credits remaining at the end. The loop invariant is that numcredit $=2 \mathrm{n}-2 \mathrm{i}+\mathrm{s}$, initially 2 n . Eventually numcredit is s, which is at least 0 . The number of iterations of both loops together is thus at most 2 n . The input and output loops are each $\Theta(n)$, hence the entire code is $\Theta(n)$.

