1. True or False. Write "O" if the answer is not known to science at this time. [5 points each]

(a) ______ All sparse graphs are planar.
(b) ______ The time complexity of quicksort is $O(n^2)$.
(c) ______ The time complexity of quicksort is $\Omega(n \log n)$.
(d) ______ If a problem is NP-complete, there is no polynomial time algorithm which solves it.

2. Fill in the blanks. [5 points each blank.]

(a) __________________________ algorithm for solving the single source shortest path problem only works correctly if there are no negative weights.

(b) In dynamic programming the subproblems must be worked in __________________________ order.

(c) Vertices u and v of a graph G belong to different __________________________ if there is no path in G from u to v.

(d) If there is no directed path in a directed graph from vertex u to vertex v, then u and v belong to different __________________________

(e) An $n \times n$ matrix with $n \log n$ non-zero entries would probably be considered __________________________
3. Solve the recurrences. Give asymptotic answers in terms of \(n \), using either \(O \), \(\Omega \), or \(\Theta \), whichever is most appropriate. (5 points each)

(a) \(F(n) = 2F\left(\frac{n}{2}\right) + n \)

(b) \(F(n) \geq 4F\left(\frac{n}{2}\right) + n^2 \)

(c) \(F(n) = F(n - 1) + \frac{n}{4} \)

(d) \(F(n) = F(n - \sqrt{n}) + \sqrt{n} \)

(e) \(F(n) = F(\log n) + 1 \)

(f) \(T(n) < T(n - 2) + n^2 \)

(g) \(G(n) \geq G(n - 1) + n \)

(h) \(H(n) \leq 2H(\sqrt{n}) + O(\log n) \).

(i) \(F(n) = F(n/2) + 1 \)

(j) \(F(n) = F(n - 1) + O(\log n) \)

(k) \(F(n) = F\left(\frac{n}{2}\right) + 2F\left(\frac{n}{4}\right) + n \)

(l) \(F(n) = F\left(\frac{3n}{5}\right) + F\left(\frac{4n}{5}\right) + n^2 \)
4. Find the asymptotic complexity, in terms of \(n \), for each of these fragments, expressing the answers using \(O \), \(\Theta \), or \(\Omega \), whichever is most appropriate. (5 points each)

(a) \(\text{for(int } i = 0; i < n; i = i+1) \)

(b) \(\text{for(int } i = 1; i < n; i = 2*i) \)

(c) \(\text{for(int } i = 2; i < n; i = i*i) \)

(d) \(\text{for(int } i = n; i > 0; i--) \)
\(\quad \text{for(int } j = i; 2*j <= n; j = 2*j) \)

(e) \(\text{for(int } i = n; i > 0; i--) \)
\(\quad \text{for(int } j = 1; 2*j <= i; j = 2*j) \)

(f) \(\text{for(int } i = 1; i < n; i++) \)
\(\quad \text{for(int } j = n; j > 0; j = j/2) \)

(g) \(\text{for(int } i = n; i > 1; i = \sqrt{i}) \)

(h) \(\text{for(int } i = 1; i*i < n; i++) \)

5. [10 points each] Give the asymptotic time complexity, in terms of \(n \), for each of these recursive subpro-grams.

(a) \(\text{int } f(\text{int } n) \)
\(\quad \{ \)
\(\quad \quad \text{if (} n < 2 \text{) return 1; } \)
\(\quad \quad \text{else return } f(n-1)+f(n-1); \)
\(\quad \} \)

(b) \(\text{void hello(\text{int } n)} \)
\(\quad \{ \)
\(\quad \quad \text{if(} n >= 1 \text{)} \)
\(\quad \quad \quad \{ \)
\(\quad \quad \quad \quad \text{for(int } i = 1; i < n; i++) \)
\(\quad \quad \quad \quad \quad \text{cout } << \text{"Hello!" } << \text{endl; } \)
\(\quad \quad \quad \quad \text{hello(n/2); } \)
\(\quad \quad \quad \text{hello(n/2); } \)
\(\quad \quad \} \)
\(\} \)
6. [30 points] Which of the following problems are known to be NP-complete? Mark T or F.

(a) ______ Given a weighted graph and a number B, does the graph have a Hamiltonian cycle of weight at most B?

(b) ______ Given a table and a set of tiles of various shapes, can the tiles all be placed on the table so that none overlap and none overhang the edge?

(c) ______ Given a weighted graph, a number D, and two vertices u and v, does there exist a path between u and v of weight at most D?

7. [20 points] What is the name of the algorithm implemented by the following code?

```c
int x[n];
read in values of x from some external source;
for(int i = 0; i < n; i++)
  for(j = i+1, j < n; j++)
    if(x[j] < x[i]) swap(x[i],x[j]);
```

8. [20 points] A directed graph can be represented in the computer in several ways. Two of them are an array of out-neighbor lists, and an array of in-neighbor lists. Let G be a directed graph whose vertices are the integers $0 \ldots 19$, and whose array of out-neighbor lists is as written below. Construct the array of in-neighbor lists of G.

<table>
<thead>
<tr>
<th>Out-neighbor lists:</th>
<th>In-neighbor lists:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 1,13</td>
<td>0:</td>
</tr>
<tr>
<td>1: 5,19</td>
<td>1:</td>
</tr>
<tr>
<td>2: 5,14</td>
<td>2:</td>
</tr>
<tr>
<td>3: 9</td>
<td>3:</td>
</tr>
<tr>
<td>4: 7,15</td>
<td>4:</td>
</tr>
<tr>
<td>5: 4,10</td>
<td>5:</td>
</tr>
<tr>
<td>6: 11</td>
<td>6:</td>
</tr>
<tr>
<td>7: 16,18</td>
<td>7:</td>
</tr>
<tr>
<td>8: 17</td>
<td>8:</td>
</tr>
<tr>
<td>9: 8,15</td>
<td>9:</td>
</tr>
<tr>
<td>10: 4</td>
<td>10:</td>
</tr>
<tr>
<td>11: 7</td>
<td>11:</td>
</tr>
<tr>
<td>12: 2, 6</td>
<td>12:</td>
</tr>
<tr>
<td>13: 1, 2</td>
<td>13:</td>
</tr>
<tr>
<td>14: 11</td>
<td>14:</td>
</tr>
<tr>
<td>15: 17,18</td>
<td>15:</td>
</tr>
<tr>
<td>16:</td>
<td>16:</td>
</tr>
<tr>
<td>17:</td>
<td>17:</td>
</tr>
<tr>
<td>18:</td>
<td>18:</td>
</tr>
<tr>
<td>19: 3, 5</td>
<td>19:</td>
</tr>
</tbody>
</table>
9. [20 points] Give pseudocode for the Floyd-Warshall algorithm. The vertices are the integers 1, 2, \ldots, n. \(W[i, j] \) is the given weight of the directed edge from \(i \) to \(j \), which is \(\infty \) if there is no edge from \(i \) to \(j \). The output of the algorithm is \(F[i, j] \) for all \(i \) and \(j \), the minimum length of any directed path from \(i \) to \(j \), as well as the backpointer \(B[i, j] \) for all \(i \neq j \). Assume the graph is strongly connected and that there are no negative cycles.
10. [20 points] Let the function F on positive integers be defined as follows:

$$F(n) = \begin{cases}
1 & \text{if } n \leq 2 \\
(F(\frac{n}{2}) \ast (F(\frac{n-2}{2}) + F(\frac{n+2}{2})) \mod 23 & \text{if } n > 2 \text{ and } n \text{ is even} \\
(F(\frac{n-1}{2})^2 + (F(\frac{n+1}{2})^2) \mod 23 & \text{if } n > 2 \text{ and } n \text{ is odd}
\end{cases}$$

You can compute $F(n)$ for any n in $O(n)$ time using dynamic programming. However, the computation can be done much faster by using memoization.

Write pseudo-code for a memoization algorithm which prints $F(n)$ for some given n in less than linear time.
11. [20 points] Use the DFS-based algorithm in our textbook to find the strong components of the directed graph G shown below. Of course, you can easily “eyeball” the answer, but I want to see the steps of the algorithm.
12. [20 points] Find the longest increasing subsequence of the sequence 5, 1, 2, 7, 0, 9, 3, 5, 8, using the dynamic programming algorithm I showed you in the video. Show all work.

13. [20 points] This problem requires serious thought. Consider the following code:

```java
for(int i = 2; i < n*n; i = i*i)
    for(int j = 1; j < i; j++)
```

The asymptotic time complexity of this code is not \(\Theta \) of any of the functions of \(n \) listed at the beginning of the test, but it is \(O \) of one of those functions, and is also \(\Omega \) of another one of those functions. Find the two functions. (Hint: When you are faced with the problem of finding an unknown formula, it frequently helps to experiment by choosing some test numbers. Even bigger hint: try \(n = 16, 17, 256, \) and 257.)