
Computer Science 477/677 Spring 2019
University of Nevada, Las Vegas
Final Examination May 14, 2020

Name:

Final update: Thu May 14 02:47:43 PDT 2020

Print out this test and write your answers on the printout, then scan the pages and email to the GA,

Shekhar Singh.with a time stamp of either May 14 PDt or May 15 PDT. If you are in a different time zone,

be sure to adjust for that. For example, if you are in New York, your time stamp must be no later than 03:00

May 16 EDT, while if you are in Hawaii, your time stamp must be no later than May 15 21:00 HST.

If you need to attach extra pages, use white paper. If you are unable to print the test, you may write the

answers on white paper. Mot lined paper, and not any other color. Please write large and dark enough that

your answers are unambigurous Do not use lined paper, as it does not scan very well. Use only bright white

paper. Make sure your name is on every page, in case pages get separated.

The entire exam is 330 points.

Read this first. Each answer to problems 3, 4, 5, and 13 is O, Ω, or Θ, of one of the following functions: n,

n2, n3, n3,
√
n, log n, log2 n, log log n, log∗ n, log n log log n, n log n, n2 log n, 2n.

1. True or False. Write “O” if the answer is not known to science at this time. [5 points each]

(a) All sparse graphs are planar.

(b) The time complexity of quicksort is O(n2).

(c) The time complexity of quicksort is Ω(n log n).

(d) If a problem is NP-complete, there is no polynomial time algorithm which solves it.

2. Fill in the blanks. [5 points each blank.]

(a) algorithm for solving the single source shortest path problem only works

correctly if there are no negative weights.

(b) In dynamic programming the subproblems must be worked in order.

(c) Vertices u and v of a graph G belong to different if there is no path in G from

u to v.

(d) If there is no directed path in a directed graph from vertex u to vertex v, then u and v belong to

different .

(e) An n× n matrix with n log n non-zero entries would probably be considered



Name:

3. Solve the recurrences. Give asymptotic answers in terms of n, using either O, Ω, or Θ, whichever is most

appropriate. (5 points each)

(a) F (n) = 2F
(

n

2

)

+ n

(b) F (n) ≥ 4F
(

n

2

)

+ n2

(c) F (n) = F (n− 1) + n

4

(d) F (n) = F
(

n−√
n
)

+
√
n

(e) F (n) = F (log n) + 1

(f) T (n) < T (n− 2) + n2

(g) G(n) ≥ G(n− 1) + n

(h) H(n) ≤ 2H(
√
n) +O(log n).

(i) F (n) = F (n/2) + 1

(j) F (n) = F (n− 1) +O(log n)

(k) F (n) = F
(n

2

)

+ 2F
(n

4

)

+ n

(l) F (n) = F

(

3n

5

)

+ F

(

4n

5

)

+ n2

2



Name:

4. Find the asymptotic complexity, in terms of n, for each of these fragments, expressing the answers using

O, Θ, or Ω, whichever is most appropriate. (5 points each)

(a) for(int i = 0; i < n; i = i+1)

(b) for(int i = 1; i < n; i = 2*i)

(c) for(int i = 2; i < n; i = i*i)

(d) for(int i = n; i > 0; i--)

for(int j = i; 2*j <= n; j = 2*j)

(e) for(int i = n; i > 0; i--)

for(int j = 1; 2*j <= i; j = 2*j)

(f) for(int i = 1; i < n; i++)

for(int j = n; j > 0; j = j/2)

(g) for(int i = n; i > 1; i = sqrt(i));

(h) for(int i = 1; i*i < n; i++)

5. [10 points each] Give the asymptotic time complexity, in terms of n, for each of these recursive subpro-

grams.

(a) int f(int n)

{

if (n < 2) return 1;

else return f(n-1)+f(n-1);

}

(b) void hello(int n)

{

if(n >= 1)

{

for(int i = 1; i < n; i++)

cout << "Hello!" << endl;

hello(n/2);

hello(n/2);

}

}

3



Name:

6. [30 points] Which of the following problems are known to be NP-complete? Mark T or F.

(a) Given a weighted graph and a number B, does the graph have a Hamiltonian cycle of weight

at most B?

(b) Given a table and a set of tiles of various shapes, can the tiles all be placed on the table so

that none overlap and none overhang the edge?

(c) Given a weighted graph, a number D, and two vertices u and v, does there exist a path

between u and v of weight at most D?

7. [20 points] What is the name of the algorithm implemented by the following code?

int x[n];

read in values of x from some external source;

for(int i = 0; i < n; i++)

for(j = i+1, j < n; j++)

if(x[j] < x[i]) swap(x[i],x[j]);

8. [20 points] A directed graph can be reprented in the computer in several ways. Two of them are an

array of out-neighbor lists, and an array of in-neighbor lists. Let G be a directed graph whose vertices

are the integers 0 . . . 19, and whose array of out-neighbor lists is as written below. Construct the array

of in-neighbor lists of G.

Out-neighbor lists: In-neighbor lists:

0: 1,13 0:

1: 5,19 1:

2: 5,14 2:

3: 9 3:

4: 7,15 4:

5: 4,10 5:

6: 11 6:

7: 16,18 7:

8: 17 8:

9: 8,15 9:

10: 4 10:

11: 7 11:

12: 2, 6 12:

13: 1, 2 13:

14: 11 14:

15: 17,18 15:

16: 16:

17: 17:

18: 18:

19: 3, 5 19:

4



Name:

9. [20 points] Give pseudocode for the Floyd-Warshall algorithm. The vertices are the integers 1, 2, . . . n.

W [i, j] is the given weight of the directed edge from i to j, which is ∞ if there is no edge from i to j.

The output of the algorithm is F [i, j] for all i and j, the minimum length of any directed path from i to

j, as well as the backpointer B[i, j] for all i 6= j. Assume the graph is strongly connected and that there

are no negative cycles.

5



Name:

10. [20 points] Let the function F on positive integers be defined as follows:

F (n) =











1 if n <= 2
(

F (n
2
) ∗ (F (n−2

2
) + F (n+2

2
)
)

mod 23 if n > 2 and n is even
(

F (n−1

2
)2 + (F (n+1

2
)2
)

mod 23 if n > 2 and n is odd

You can compute F (n) for any n in O(n) time using dynamic programming. However, the computation

can be done much faster by using memoization.

Write pseudo-code for a memoization algorithm which prints F(n) for some given n in less than linear

time.

6



Name:

11. [20 points] Use the DFS-based algorithm in our textbook to find the strong components of the directed

graph G shown below. Of course, you can easily “eyeball” the answer, but I want to see the steps of the

algorithm.

a c

db e

f g

h i

7



Name:

12. [20 points] Find the longest increasing subsequence of the sequence 5, 1, 2, 7, 0, 9, 3, 5, 8, using the

dynamic programming algorithm I showed you in the video. Show all work.

13. [20 points] This problem requires serious thought. Consider the following code:

for(int i = 2; i < n*n; i = i*i)

for(int j = 1; j < i; j++)

The asymptotic time complexity of this code is not Θ of any of the functions of n listed at the beginning

of the test, but it is O of one of those functions, and is also Ω of another one of those functions. Find the

two functions. (Hint: When you are faced with the problem of finding an unknown formula, it frequently

helps to experiment by choosing some test numbers. Even bigger hint: try n = 16,17,256, and 257.)

8


