
University of Nevada, Las Vegas Computer Science 477/677 Spring 2020

Practice Examination for April 30, 2020
Updated Sat Apr 25 12:12:28 PDT 2020

The entire practice examination is 340 points.

The current closure order extends to April 30.

1. True or False. [5 points each] T = true, F = false, and O = open, meaning that the answer is not known

to science at this time.

(a) F Computers are so fast today that complexity theory is only of theoretical, but not practical,

interest.

(b) O If a problem can be worked in O(n) time by a single processor, then it can be worked in

polylogarithmic time, that is, O(logk n) time for some constant k, if polynomially many processors

are used.

(c) T The asymptotic space complexity of a program cannot excced its asymptotic time complexity.

2. (10 points each) Find the asymptotic final value of kount for each of these code fragments in terms of n.

Θ(n), Θ(n2), Θ(n log n), Θ(log∗ n), Θ(log log n), Θ(
√
n), In each case, I will give an equivalent integral.

(a) int kount = 0;

for(int i = 0; i < n; i++)

for(int j = i; j > 0; j--)

kount++;

∫ n

x=0

∫ x

y=0

dydx =

∫ n

x=0

y]
x
y=0 dx =

∫ n

x=0

xdx =
x2

2

]n

0

=
n2

2
= Θ(n2)

(b) int kount = 0;

for(int i = 1; i < n*n; i = 2*i)

kount++;

Substituting ℓ = log i we can write:

int kount = 0;

for(int j = 0; j < 2*log n; \ell++)

kount++;
∫ 2 logn

y=0

dy = y]
2 logn
0 = 2 log n = Θ(log n)

(c) int kount = 0;

for(int i = 0; i*i < n; i++)

kount++;

Substituting n = m2 we obtain:



int kount = 0;

for(int i = 0; i*i < m*m; i++)

kount++;

Note that i2 < m2 if and only if i < m, since i,m are positive integers:

int kount = 0;

for(int i = 0; i < m; i++)

kount++;
∫ m

x=0

dx = x]
m
x=0 = m =

√
n = Θ(

√
n)

(d) int kount = 0;

for(int i = 1; i < n; i = 2*i)

for(int j = 0; j < i; j++)

kount++;

Let k = log2 i. We obtain

int kount = 0;

for(int k = 0; k < log2(n); i = 2*i)

for(int j = 0; j < 2^k; j++)

kount++;

Recall that the the antiderivative of ex is ex, and the ant-derivative of Kx is Kx lnK for any positive

constant K. Recall also that ln 2 is a constant. We have:

∫ log
2
n

z=0

∫ 2z

y=0

dydz =

∫ log
2
n

z=0

y]
2z

y=0 dz =

∫ log
2
n

z=0

2zdz = 2z ln 2]
log

2
n

z=0 = n ln 2− ln 2 = Θ(n)

(e) int kount = 0;

for(int i = 1; i < n; i = 2*i)

for(int j = i; j < n; j++)

kount++;

Let k = log2 i. We obtain

int kount = 0;

for(int k = 0; k < log2(i) ; k++

for(int j = 2^k; j < n; j++)

kount++;

We have:
∫ log

2
n

z=0

∫ n

y=2z
dydz =

∫ log
2
n

z=0

y]
y=n
y=2z dz =

∫ log
2
n

z=0

(n− 2z)dz

= nz − 2z ln 2]
z=log

2
n

z=0 = n log2 n− (n− 1) ln 2 = Θ(n log n)

(f) int kount = 0;

for(int i = n; i > 0; i = log(i))

kount++;

2



(g) int kount = 0;

for(int i = 0; i < n*n; i = i+2*sqrt(i)+1)

kount++;

Hint: Use the substitution i = j2. Note that i+ 2
√
i+ 1 = (

√
i+ 1)2.

int kount = 0;

for(int j = 0; j*j < n*n; j++)

kount++;

Of course, j2 < n2 if and only if j < n. Thus we have:

int kount = 0;

for(int j = 0; j < n; j++)

kount++;

Hence kount = Θ(n).

(h) Deleted.

(i) Deleted.

(j) int kount = 0;

for(int i = 2; i < n; i = i*i)

kount++;

Let j = log2 i

int kount = 0;

for(int j = 1; j < log2(n); j = 2*j)

kount++;

Let k = log2 j

int kount = 0;

for(int k = 0; k < log2(log2(n)); k++)

kount++;

Hence kount = Θ(log log n).

(k) int kount = 0;

for(int i = 1; i < n; i++)

for(int j = i; j < n; j=2*j)

kount++;

Let k = j/i, which is always a power of 2. Initially, k = 1, and it doubles at each iteration

of the inner loop, and it’s bounded above by n/i. Let u = log2 k, which is always an integer.

Initially, u = 0, it increments by 1 at each iteration of the inner loop, and it’s bounded above by

log2(n/i) = log2 n− log2 i.

int kount = 0;

for(int i = 1; i < n; i++)

for(int k = 1; j < n/i; k=2*k)

kount++;

3



int kount = 0;

for(int i = 1; i < n; i++)

for(int u = 0; u < log2(n)-log2(i);u++)

kount++;

log2 x = lnx/ ln 2, hence the antiderivative of log2 x is
lnx− x

ln 2
= x log2 x− x

ln 2

The final value of kount is approximately

∫ n

x=1

∫ log
2
n−log

2
x

w=0

dwdx =

∫ n

x=1

(log2 n− log2 x)dx =
(

x log2 n− x log2 x+
x

ln 2

)]n

x=1
=

n− 1

ln 2
− log2 n = Θ(n)

3. (10 points each) Find the asymptotic complexity of F (n) for each recurrence, expressed using Θ if

possible, Ω or O otherwise.

For these problems use the master theorem.

(a) F (n) ≤ F (n/2) + n O(n)

(b) F (n) = 2F (n/2) + n Θ(n log n)

(c) F (n) = 4F (n/2) + n Θ(n2)

(d) F (n) ≥ F (n/2) + 1 Ω(log n)

(e) F (n) = 2F (n/4) +
√
n Θ(

√
n log n)

For these problems, use the anti-derivative methold.

(f) F (n) = F (n− 1) + n Θ(n2)

(g) F (n) = F (n− 2) + n2 Θ(n3)

(h) F (n) = F (n−√
n) + n

Move the first term on the left to the right, then divide both sides by
√
n

F (n)− F (n−√
n)√

n
=

√
n

F ′(n) = Θ(
√
n)

F (n) = Θ
(

n
3

2

)

For these problems, use the generalized master theorem.

(i) F (n) = F (n/3) + F (n/4) + F (n/5) + n Θ(n) because 1
3
+ 1

4
+ 1

5
< 1

(j) F (n) = 2F (n/4) + F (n/2) + n Θ(n log n) because 2(̇ 1
4
) + 1

2
= 1

(k) F (n) = F (3n/5) + F (4n/5) + n Θ(n2) because
(

3
5

)2
+
(

4
5

)2
= 1

(l) F (n) = F (3n/5) + F (4n/5) + n2 Θ(n2 log n) because
(

3
5

)2
+

(

4
5

)2
= 1

4



(m) F (n) = 2F (2n/3) + F (n/3) + 1 Θ(n2) because 2
(

2
3

)2
+
(

1
3

)2
= 1

(n) F (n) ≤ F (n/5) + F (7n/10) + n O(n) because 1
5
+ 7

10
< 1

4. [20 points] Find an optimal prefix-free code for the alphabet {A,B,C,D,E,F,G} with the following

frequency distribution.

A 12

B 6

C 8

D 10

E 30

F 4

G 5

B

A

C

D

E

B C

D A

E

4 6 8

149 10

19 26

12

3045

75

5

F

G

011

0100

0101

001

1

0000

0001

0

0

0 0

0

1

1

1
1

11

0

F G

This answer is not unique, but the code strings for any optimal code have the same lengths.

5. [20 points] Consider a array of n numbers. The sum of those numbers can be computed in logarithmic

time by using n processors working in parallel.

Suppose that the numbers in the array are:

1, 2, 9, 0, 5, 7, 2, 8, 6, 3, 4, 1, 5, 9, 5, 6.

Walk through the parallel algorithm which finds the sum using n processors. At each level, show the

intermediate results. Your diagram should clearly indicate each time two numbers are combined into

one number.

1 2 9 0 5 7 2 8 6 3 4 1 5 9 5 6

3 9 12 10 9 5 14 11

12 22 14 25

34 39

73

With n processors, the problem can be worked in

O(log n) time. Initially, we have 16 numbers in

the example. In the first phase, 8 processors com-

bine them in pairs, obtaining 8 numbers. In the

next phase, 4 processors combine those in pairs,

obtaining 4 numbers. In the next phase, 2 proces-

sors combine those in pairs, obtaining 2 numbers.

In the final phase, one processor combines those to

find the overall sum. There are four phases, and

each phase can be worked in O(1) time. Note that

log2(16) = 4.

6. [20 points] Let A be an array of n numbers. Consider the problem of finding the maximum sum of any

contiguous subarray. For example, if the items of A are -3, 2, 4, -5, 3, 2, -1, 4, the contiguous array with

5



the maximum sum is 2, 4 -5, 3, 2, -1, 4; If the items of A are -5, 3, -2, 4, 6, -8, 1, -3, 5 then the answer

is 3, -2, 4, 6. There are at four known algorithms for this problem:

We write S[i, j] =
∑j

k=i A[k]. The problem is to find max1≤i≤j≤n S[i, j].

(a) An exhaustive algorithm which takes O(n3) time.

Compute S[i, j] for all i, j and select the largest. There are Θ(n2) choices of i, j and it takes O(n)

time to compute each one. Thus, this method takes O(n3) time.

(b) A slightly more intelligent algorithm which takes O(n2) time. Note that S[i, j]+A[j+1] = S[i, j+1].

Using this equation, for each i, we can compute S[i, j] for all j ≥ i in O(n) time. Thus, we compute

all S[i, j] in O(n2) time.

Since the number of values of S is Θ(n2), any algorithm faster than that will have to avoid computing

all S[i, j].

(c) A rather clever divide and conquer algorithm, which takes O(n log n) time.

I will skip the explanation of this one.

(d) A sophisticated dynamic programming algorithm which takes O(n) time.

Define M [k] = max {S[i, j] : i ≤ j ≤ k}, Define N [k] = max {S[i, k] : i ≤ k}. Our dynamic algorithm

has the following structure:

for(k = 1; kn; k++)

{

Compute N[k];

Compute M[k];

}

return M[n};

It is possible to compute both N [k], and then M [k] in O(1) time. Here is the pseudo-code.

N[1] = A[1];

M[1] = A[1];

for(int k = 2; k <= n; k++)

{

N[k] = max{A[k],N[k-1]+A[k]};

M[k] = max{N[k],M[k-1]};

}

return M[n];

Do you see how it works?

7. [20 points] The distance between two vertices x, y of a connected unweighted graph is defined to be the

minimum number of edges of a path from x to y. The diameter of such a graph is defined to be the

maximum distance between any two vertices.

Suppose you are given a connected undirected graph G with n vertices and m edges, where n is one

billion and m is approximately 10n, and no vertex has degree more than 100. (Think of the internet.)

Your job is to find the diameter of G.

6



(a) How long would that take if you use the Floyd-Warshall Algorithm?

O(n3). That would be approximately 1027 steps.

(b) Describe the algorithm you would recommend.

One idea is, for each vertex v, to use breadth first search to find the vertex farthest from v. This

would take O(nm) time, about 1019 steps.

(c) Can your computation be efficiently parallelized if you hava a parallel machine with a billion pro-

cessors? If you have p processors, for p ≤ n. assign each processor a set of n/p vertices, and have

it use breadth first search to find the farthest vertex from each of those. Thus the problem can be

solved in O(m) time using n processors, or O(mn/p) time using p ≤ n processors.

8. Use Graham scan to find the convex hull of the set of dots in the figure below. Use the point (1,4) as

the pivot.

2 4 6 8 10

2

4

6

8

10

0
0

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

7



2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

2 4 6 8 10

2

4

6

8

10

0
0

2

4

5

3

0

1

9. Fill in the blanks. [5 points each blank]

(a) The items in a priority queue represent unfulfilled obligations.

(b) If a hash table has n places and there are n data items, What is the approximate percentange of

places that will hold more than one item? 26 or 27 (Within 1 percentage point.)

If n is large, the probability that there are exactly k items in a given place is approximately
1

k! e

which is
1

e
if k = 0 or k = 1. Thus the probability that there are 2 or more items is 1− 2

e
≈ 0.264

More generally, if there are n items placed randomly in a hash table of size m, the average number

of items in a place is n/m, and the probability that a given place will have exactly k items is

approximately
(n/m)k

k! en/m

8


