
University of Nevada, Las Vegas Computer Science 477/677 Spring 2021

Assignments 4 and 5: Due Tuesday March 9, 2021 11:59 pm

Name:

You are permitted to work in groups, get help from others, read books, and use the internet. Turn in the

completed assignment on Canvas, using instructions given to you by the grader, Mr. Nicholas Heerdt, by 11:59

PM February 25.

1. Fill in the blanks.

(a) In perfect hashing, no two data have the same hash value.

(b) Using Huffman coding, the codons for the different symbols of a message may be written consec-

utively without spaces.

2. Give the asymptotic time complexity in terms of n, using Θ, O, or Ω, whichever is most appropriate.

(a) F (n) ≥ F (n−√
n) + n2

F (n)− F (n−√
n) ≥ n2

F (n)− F (n−√
n)√

n
≥ n3/2

F ′(n) = Ω(n3/2

F (n) = Ω(n5/2

(b) H(n) < H(n/3) +H(n/4) + 2H(n/5) + n

1

3
+ 1

4
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5
= 47

60
< 1

Therefore

H(n) = O(n)

(c) G(n) = 3(G(2n/3) +G(n/3)) + 5n2

3
(

2

3

)3
+ 3

(

1

3

)3
= 1

Therefore

G(n) = Θ(n3)

3. For each of these recursive subprograms, write a recurrence for the time complexity, then solve that

recurrence.

(a) void george(int n)

{

if(n > 0)



{

for(int i = 0; i < n; i++) cout << "hello" << endl;

george(n/2); george(n/3); george(n/6);

}

}

G(n) = G(n/2) +G(n/3) +G(n/6) + n

1

2
+ 1

3
+ 1

6
= 1

Therefore

G(n) = Θ(n log n)

(b) void martha(int n)

{

if (n > 1)

{

martha(n-1);

martha(n-2):

}

}

Hint: Look at problem 0.3 on page 9 of your textbook.

M(n) = 1 +M(n− 1) +M(n− 2)

M(n) = Θ
((

1+
√
5

2

)n)
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4. Walk through Kruskal’s algorithm to find the minimum spanning tree of the weighted graph shown

below. Show the evolution of the union/find structure at several intermediate steps. Whenever there is

choice between two edges of equal weight, choose the edge which has the alphabetically largest vertex.

Whenever there is a union of two trees of equal weight, choose the alphabetically larger root to be the

root of the combined tree. Indicate path compression when it occurs.
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We process the edges in increasing order of weight, using the given tie-breaker. The order of edges is

DC, GE, KI, LF, MH, NJ, DA, IB, JH, LG, GF, MJ, HC, KE, KF, BA, ...

This is not a complete list of edges, but once those edges are processed, the algorithm halts.

This is the initial union/find forest.

A NK E G F L H M JC D B I
1 1 1 1 1 1 1 1 1 1 1 1 1 1

We now process edges of length 1, namely DC, GE, KI, LF, MH, and NJ.

A C D B K I E G F L H M J N
1 12 2 2 2 2 21 1 1 1 1 1

We now process edges of length 2, namely DA, IB, JH, and LG.

A C D B K I E G F L H M J N
1 1 2 21 1 1 1 1 13 3 4 4

We now process edges of length 3, namely GF and MJ. There is no change in the data structure. We

then process edges of length 4, namely HC and KE. There are two instances of path compression.

A C D B K I E G F L H M J N
1 1 2 21 1 1 1 1 13 3 77

Finally, we process edge BA. There is one instance of path compression.
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A C D B K I E G F L H M J N
1 1 2 21 1 1 1 1 13 3 7 14

Since n− 1 = 13 edges have been selected, The minimal spanning tree is complete.
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5. A hash table with of size m = 200 is used to store 400 data items, using a pseudo-random hash function.

The average number of items in a cell (“bucket”) is clearly 400

200
= 2, but there could be empty cells.

What is the expected number of empty cells? Approximate to the nearest integer. Hint: You may need

to look in a statistics textbook, or on the internet, to figure this out.

The expected number of cells with exactly k item is
m
(

n
m

)k

k!e
n

m

. Since m = 200, n = 400 and k = 0, the

expected number of empty cells is
200

e2
≈ 27

6. Insert the letters B, A, Y, H, P, D into an empty treap, where the “random” keys are given in the

following table. Show the treap after each insertion and indicate all rotations.
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7. Find an optimal Huffman code on the alphabet A,B,C,D,E,F where frequencies are given in the following

table.
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8. A 3-dimensional 9 × 7 × 10 rectangular array A is stored in main memory in row major order, and its

base address is 8192. Each item of A takes one word of main memory, that is, one addressed location.

Find the address of A[4][5][2].

The offset is the number of predecessors, which is 4× 7× 10 + 5× 10 + 2 = 332. The address is

8192 + 332 = 8324.

9. You wish to compute all entries of Pascal’s triangle down to the 10th row, namely C(n, k) =
(

n
k

)

for

0 ≤ k ≤ n ≤ 10 by dyamic programming, using the recurrence C(n, k) = C(n − 1, k − 1) + C(n − 1, k)

for 0 < k < n, and C(n, 0) = C(n, n) for all n. To save space, you want to store Pascal’s triangle as a

triangular array. C(n, k) will be stored as X[location], where location is a function of n and k. Here

is your code, with one line deleted:

int const N = 10;

int X[N*(N+1)/2]; // The size of X is N+1 choose 2, which is 55 if N = 10

int location(int n,int k)

{

assert(0 <= k and k <= n);

return n*(n+1)/2+k;

}

void store(int value, int n, int k)

{

X[location(n,k) = Value;

}

int fetch(int n, int k)

{

return X[location(n,k)];

}
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int main()

{

for(int n = 0; n <= N; n++)

for(int k = 0; k <= n; k++)

if(k == 0 or k == n) store(1,n,k);

else store(fetch(n-1,k-1)+fetch(n-1,k),n,k);

return 1;

// Write out the triangle

for(int n = 0; n <= N; n++)

{

for(int k = 0; k <= n; k++)

cout << " " << fetch(n,k);

cout << endl;

}

return 1;

}

The only missing part is the return value of the function location. Fill it in.

In a row major visitation of Pascal’s triangle,

(

n

k

)

has

(

n+ 1

2

)

+ k =
n(n+ 1)

2
+ k predecessors.

I ran the program. Here is the output.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
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10. Consider the following program, where n is a given constant. The purpose of the program is to find the

longest increasing subsequence of a sequence.

int A[n];

int B[n];

void getA()

{

for(int i = 0; i < n; i++) cin >> A[i];

}

int main()

{

getA();

int s = 0;

int i = 0;

while(i < n) // beginning of outer loop

{

while(s > 0 and B[s-1] > A[i]) s--; // inner loop

B[s] = A[i];

s++;

i++;

} // end of outer loop

for(int j = 0; j < s; j++) cout << B[j];

cout << endl;

return 1;

}

(a) If n = 10 and the input stream is 0 6 9 8 1 3 2 5 4 7 what is the output?

(b) The inner and outer loops are both linearly bounded, and thus the time complexity of the code is

O(n2). But, it is not Θ(n2). Use amortization to prove that the time complexity is Θ(n).

I haven’t gone over amortization, and besides, my program is incorrect, so this problem

will not be graded.

11. You are trying to construct a cuckoo hash table of size 8, where each of the 8 names listed below has the

two possible hash values indicated in the array. Using Hall’s marriage theorem, prove that you will fail

to construct the table.

h1 h2

Ann 1 0

Bob 4 2

Cal 0 7

Dan 1 6

Eve 1 0

Fay 6 2

Gus 5 3

Hal 0 4

The “boys” are the items in the left column and the “girls” are hash table

indices. The “girls” that each “boy” “knows” are the two indices in the h1

and h2 columns. We need to assign a girl to each boy, and no girl can be

assigned to more than one boy. According the Hall’s marriage theorem, such

an assignment exists if and only if for any set B of k boys, the set of girls

known to the boys in B has cardinality at least k.

Consider the set B = {Ann,Bob,Dan,Eve,Fay,Hal}, which has cardinality 6.

The set of indices that can be assigned to members of B is {0, 1, 2, 4, 6},
which has cardinality 5. Hence no assignment exists.
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12. Give the asymptotic complexity of F (n) for each of these recurrences, using Θ.

(a) F (n) = 2F (n− 1) + 1

F (n) = Θ(2n)

(b) F (n) = 2F (n− 1) + n

F (n) = Θ(2n)

(c) F (n) = 2F (n− 1) + n2

F (n) = Θ(2n)

13. Explain how to implement a very sparse one-dimensional array using a search structure.

Let A[N ] be the virtual array, where N is large and, at any given time, most of the entries of A are

zero, or some other default value. We set up a search structure which stores memos. Each memo is an

ordered pair (i, x) such that A[i] = x. If, for some i, there is no such ordered pair, then A[i] = 0. Fetch

and store for A are implemented using find and insert for the search structure.
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