University of Nevada, Las Vegas Computer Science 477/677 Fall 2021

Assignment 1: Due Monday August 302021

Name:
You are permitted to work in groups, get help from others, read books, and use the internet. Your answers must be written in a pdf file and uploaded to canvas, by midnight January 26th. Your file must not exceed 4 pages. If you have any questions, or you are having trouble uploading the assignment you may email the grader, XXXXX at XXXXX@unlv.nevada.edu.

1. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω. Θ in the blank.
(a) $n-100=$ \qquad ($n-200$)
(b) $n^{1 / 2}=$ \qquad $\left(n^{2 / 3}\right)$
(c) $100 n+\log n=-\ldots---\left(n+\log ^{2} n\right)$
(d) $n \log n=$ \qquad $(10 n+\log (10 n))$
(e) $\log (2 n)=$ \qquad $(\log (3 n))$
(f) $10 \log n=$ \qquad $\left(\log \left(n^{2}\right)\right)$
(g) $n^{1.01}=$ \qquad $\left(n \log ^{2} n\right)$
(h) $n^{2} / \log n=$ \qquad $\left(n \log ^{2} n\right)$
(i) $n^{0.1}=$ \qquad $\left(\log ^{2} n\right)$
(j) $(\log n)^{\log n}=$ \qquad $(n / \log n)$
(k) $\sqrt{n}=$ \qquad $\left(\log ^{3} n\right)$
(1) $n^{1 / 2}=$ \qquad $\left(5^{\log _{2} n}\right)$
(m) $n 2^{n}=$ \qquad $\left(3^{n}\right)$
(n) $2^{n}=$ \qquad $\left(2^{n+1}\right)$
(o) $n!=$ \qquad $\left(2^{n}\right)$
(p) $\log n^{\log n}=\ldots----\left(2^{\left(\log _{2} n\right)^{2}}\right)$
(q) $\sum_{i=1}^{n} i^{k}=\ldots--\left(n^{k+1}\right)$
2. Work problem $0.3(\mathrm{c})$ on page 9 of the textbook.
3. Consider the following $\mathrm{C}++$ program.
```
void process(int n)
{
    cout << n << endl;
    if(n > 1) process(n/2);
    cout << n%2;
}
int main()
{
    int n;
    cout << "Enter a positive integer: ";
    cin >> n;
    assert(n > 0);
    process(n);
    cout << endl;
    return 1;
}
```

The last line of the output of process (n) is a string of bits. What does this bitstring represent?
4. The recursive algorithm implemented below as a $\mathrm{C}++$ function is used as a subroutine during the calculation of the level payment of an amortized loan. What does it compute?

```
float squre(float x)
    {
    return x*x;
    }
float mystery(float x, int k)
    {
        if (k == 0) return 1.0;
    else if(x == 0.0) return 0.0;
    else if (k < 0) return 1/mystery(x,-k);
    else if (k%2) return x*mystery(x,k-1);
    else return mystery(squre(x),k/2);
    }
```

