University of Nevada, Las Vegas Computer Science 477/677 Spring 2021

 Answers to Assignment 1: Due Monday January 26, 20211. Problem 0.1 on page 8 of the textbook. In each of the following situations, write O, Ω. Θ in the blank.
(a) $n-100=\Theta(n-200)$
(b) $n^{1 / 2}=O\left(n^{2 / 3}\right)$
(c) $100 n+\log n=\Theta\left(n+\log ^{2} n\right)$
(d) $n \log n=\Theta(10 n \log (10 n))$
$n \log n=\Omega(10 n+\log (10 n))$
(e) $\log (2 n)=\Theta(\log (3 n))$
(f) $10 \log n=\Theta\left(\log \left(n^{2}\right)\right)$
(g) $n^{1.01}=\Omega\left(n \log ^{2} n\right)$
(h) $n^{2} / \log n=\Omega\left(n \log ^{2} n\right)$
(i) $n^{0.1}=\Omega\left(\log ^{2} n\right)$
(j) $(\log n)^{\log n}=\Omega(n / \log n)$
(k) $\sqrt{n}=\Omega\left(\log ^{3} n\right)$
(l) $n^{1 / 2}=O\left(5^{\log _{2} n}\right)$
(m) $n 2^{n}=O\left(3^{n}\right)$
(n) $2^{n}=\Theta\left(2^{n+1}\right)$
(o) $n!=\Omega\left(2^{n}\right)$
(p) $\log n^{\log n}=O\left(2^{\left(\log _{2} n\right)^{2}}\right)$ [hard]
(q) $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$
2. Work problem $0.3(\mathrm{c})$ on page 9 of the textbook.
$F_{n}=F_{n-1}+F_{n-2}$ We start by assuming $F_{n}=2^{n C}$ for some C. This is false, but it's almost true, that is $\lim _{n \rightarrow \infty} \frac{F_{n}}{2^{n C}}=K=\Theta(1)$ for the correct value of C and some positive number K. Making that assumption:

$$
\begin{aligned}
F_{n+2} & =F_{n+1}+F_{n} \\
2^{C(n+2)} * K & =2^{C(n+1)} * K+2^{C n} * K
\end{aligned}
$$

Divide both sides by $2^{C n} * K$:

$$
2^{2 C}=2^{C}+2^{0}
$$

$$
\begin{aligned}
& \text { Substitute } x=2^{C} \text { : } \\
& \qquad x^{2}=x+1
\end{aligned}
$$

The quadratic formula gives us two solutions.
But $x=2^{C}$ cannot be negative. Thus:

$$
\begin{aligned}
2^{C} & =\frac{1+\sqrt{ } 5}{2} \text { the golden ratio! } \\
C & =\log _{2}\left(\frac{1+\sqrt{ } 5}{2}\right)
\end{aligned}
$$

3. Consider the following $\mathrm{C}++$ program.
```
void process(int n)
    {
    cout << n << endl;
    if(n > 1) process(n/2);
    cout << n%2;
}
int main()
    {
    int n;
    cout << "Enter a positive integer: ";
    cin >> n;
    assert(n > 0);
    process(n);
    cout << endl;
    return 1;
}
```

The last line of the output of process (n) is the binary numeral for n.
4. The recursive algorithm implemented below as a $\mathrm{C}++$ function is used as a subroutine during the calculation of the level payment of an amortized loan. What does it compute?

```
float squre(float x)
    {
    return x*x;
    }
float mystery(float x, int k)
    {
    if (k == 0) return 1.0;
    else if(x == 0.0) return 0.0;
    else if (k < 0) return 1/mystery(x,-k);
    else if (k%2) return x*mystery(x,k-1);
    else return mystery(squre(x),k/2);
}
```

mystery (x, k) returns x^{k}.

