University of Nevada, Las Vegas Computer Science 477/677 Spring 2021
Answers to Assignment 2: Due Thursday February 4, 2021

Name:

Submit your file to Canvas by 11:59 PM on February 4, 2021. If you have any problems submitting, contact
the grader, Nicholas Heerdt.

1. Each of these code fragments takes if O(nlogn).time, but not necessarily ©(nlogn). Give the asymptotic
complexity of each in terms of n, using © in each case.

(a) for(int i = 1; i < n; i++)
for(int j = 1; j < i; j = 2%j);
cout << "Hello" << endl;
[(Inz)dz = zlnz — z[?_; = O(nlogn)
(b) for(int i = 1; i < n; i++)
for(int j = i; j < n; j = 2%j);
cout << "Hello" << endl;
I (Inn—Inz)de =znz —znz+z|’_; = O(n)
(c) for(int i = 1; i < n; i=2%i)
for(int j = 1; j < i; j++);
cout << "Hello" << endl;
Let k = logsi; then 2K = i.

for(int k = 0; i < log_2 n; k++)
for(int j = 1; j < 27k; j++);
cout << "Hello" << endl;

Let be the continuous analog of k and y the continuos analog of j.

2T _ log, n zlog2 n_1 n—1

In2 - =6()

logan 2% logan
dydz = 2% — 1)dx =
f yax (Jdz In2 In2

=0 y=1 =0

0
(d) for(int i = 1; i < n; i=2%i)
for(int j = i; j < m; j++);
cout << "Hello" << endl;cd /home/larmore/Dropbox/Courses/CS477/321

Let k = logoi; then 2% = i.

for(int k = 0; i < log_2 n; k++)
for(int j = 27k; j < n; j++);
cout << "Hello" << endl;

Let be the continuous analog of k and y the continuos analog of j.

. ; oz logy n
fm:gO2 y=2% dyd.’L‘ = fz:g()2 (n - Qx)dx - (nx a 1112) =0
glogn _ 1 1 -
=nlogyn — =nlogyn — —— = O(nlogn)

In2 In2

(e) for(int i = n; i > 1; i=i/2)
for(int j = i; j > 1; j—);
cout << "Hello" << endl;
Same as (¢). O(n)
(f) for(int i = n; i > 1; i=i/2)
for(int j =n; j > i; j—);
cout << "Hello" << endl;
Same as (d). ©(nlogn)

2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in

terms of n, using ©.
(g) for(int i = 1; i < n; i=2xi)
for(int j = 1; j < i; j=2%3);
cout << "Hello" << endl;
Hint: Use substitution. Let m = log n, k = log i, 1 = log j.
for(int k = 0; k < m; k++)
for(int 1 = 0; i < k; 1++)
cout << "Hello" << endl;
O(m?) = O(log® n)
(h) for(int i = 2; i < n; i=i*i)
cout << "Hello" << endl;
Hint: Use substitution. Let m = log n, k = log i.
Use the fact that log(a¥) = ylogx
for(int k = 1; k < m; k=2%k)
cout << "Hello" << endl;
O(logm) = O(loglogn)
(i) for(int i = 2; i < m; i=i*i)
for(int j = 1; j < i; j = 2%j)
cout << "Hello" << endl;
Hint: Use substitution. Let m = log n, k = log i, 1 = log j.

for(int k = 1; k < m; k=2x%k)
for(int 1 = 0; 1 < k; 1++)

O(m) = O(logn)

(j) for(int i = n; i > 1; i = log i)
cout << "Hello" << endl;

Use the substitution m = log* n, k = log* i

for(int k¥ = m; k > 0; k--)

Added on February 5:

The recusive definition of log* x for any real number z is: log* z =0 if z < 1
log"z=1+1log"(logz) ifz > 1
Let ¢ be the “old” value of 7 in the code, and 7 the “new” value of ¢, namely logi. Let k be the old

value of k and k the new value of k. Thus

m = log™ n
7 =logi

k =log"i
k=log*7

From the definition of log * we have:

k=log*i=1+1log*logi =1+1log"7 =14 k. Thus k = k — 1, and the last parameter of the for
statement is k — —.

End Added Text

The solution is ©(m) = O(log" n) where log" is the iterated logarithm. For any positive real number
z, log™ x is the number of times the logarithm function must be iteratively applied before the result

is less than or equal to 1.

We use the base 2 logarithm. In that case, the iterated algorithm is sometimes written as lg*.

i. What is log* 655367 Answer: 4.
ii. What is log* 655377 Answer: 5.

iii. Let N be the number of baryons in the visible universe. (Neutrons and protons are baryons.)
What is log* N? Answer: 5.

iv. It has been seriously conjectured that the radius of the entire universe is 10'°° times the radius
of the visible universe! If that is true, what is log™ of the number of baryons in the universe?
Answer 5.
log™ grows very slowly. However, it is not the slowest growing unbounded function that regularly

arises in complexity theory. That honor goes to the inverse Ackermann function.

(k) for(int i = 2; i < m; i = i*i)
for(int j = 0; j < i; j++)
cout << "Hello" << endl;
In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O
of one function of n and € of a different function of n, but is not © of any of the “usual” functions

of n. Give both the O and the © answers, both of which are “usual” functions.!

Answer: The time complexity both O(n) and Q(y/n).

1By wsual functions I mean the functions we have discussed so far in class, which include polynomials, logarithms, iterated
logarithms, powers of logarithms, roots, and even the iterated logarithm log*.

The outer loop iterates O(loglogn) times. For each value of ¢ used during the outer loop, , the
inner loop iterates I times. Those values of ¢ are numbers of the form 22" for integers k > 0. That

is,

22" =2,

22" = 2% =4,
22° = 42 = 16,
22" = 162 = 256,

22" = 9562 = 65536,

22" = 655362 = 4294967296.

Since ¢ increases rapidly, the time complexity of the code is dominated by the largest value of 4
generated in the outer loop, which is the largest value of 922" less than n. Let’s call that value I.
For example, if 4 < n <16, I = 4;if 16 < n < 256, I = 16; and if 256 < n < 65536, I = 256; and
so forth. Note that I < n < I?, which implies that \/n < I < n. The time complexity of the code

is ©(I), and we obtain our result.

3. Solve each of the following recurrences, giving the answer as © of a function of n.

(1) F(n) = F(n/2)+n?
Master theorem: A =1, B =2, C' = 2: Note that A < B€.
Thus F(n) = 0(n%) = 0(n?)

(m) F(n)=F(n/3)+1
Master theorem: A =1, B =3, C = 0: Note that A = BC.
Thus F(n) = ©(nlogn) = O(logn)

(n) F(n) =16F(n/4) + n?
Master theorem: A =16, B =4, C = 2. Note that A = B€.
Thus F(n) = ©(n®logn) = ©(n?logn)

(o) F(n)=F(n—1)+n®
Anti-derivative method: Fln) = Fln=1) =n’
F'(n) = ©(n®)
F(n) = 0(n")

(p) F(n) = F(n—logn)+logn
F(n) — F(n —logn) logn

Anti-derivative method: =
logn logn

F'(n) =06(1)
F(n) =06(n)

(@) F(n)=16F(n/4) +n
Master theorem: A = 16, B =4, C = 1. Note that A > BY, and that logg A = 2.
Thus F(n) = ©(n'°¢54) = ©(n?).

