University of Nevada, Las Vegas Computer Science 477/677 Spring 2021 Answers to Assignment 2: Due Thursday February 4, 2021

Name: \qquad
Submit your file to Canvas by 11:59 PM on February 4, 2021. If you have any problems submitting, contact the grader, Nicholas Heerdt.

1. Each of these code fragments takes if $O(n \log n)$.time, but not necessarily $\Theta(n \log n)$. Give the asymptotic complexity of each in terms of n, using Θ in each case.
(a) for (int $i=1 ; i<n ; i++)$
```
    for(int j = 1; j < i; j = 2*j);
```

 cout << "Hello" << endl;
 \(\int_{x=1}^{n}(\ln x) d x=x \ln x-\left.x\right|_{x=1} ^{n}=\Theta(n \log n)\)
 (b) for (int $i=1$; $i<n$; i++)
for (int $j=i ; j<n ; j=2 * j$) ;
cout << "Hello" << endl;
$\int_{x=1}^{n}(\ln n-\ln x) d x=x \ln x-x \ln x+\left.x\right|_{x=1} ^{n}=\Theta(n)$
(c) for (int $i=1$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}=2 * \mathrm{i}$)
for (int $j=1 ; ~ j<i ; j++$) ;
cout << "Hello" << endl;
Let $\mathrm{k}=\log _{2} \mathrm{i}$; then $2^{\mathrm{k}}=\mathrm{i}$.

```
for (int k \(=0\); i < log_2 n; k++)
    for(int \(j=1 ; ~ j<2 \wedge k ; ~ j++) ;\)
        cout << "Hello" << endl;
```

Let x be the continuous analog of k and y the continuos analog of j .

$$
\int_{x=0}^{\log _{2} n} \int_{y=1}^{2^{x}} d y d x=\int_{x=0}^{\log _{2} n}\left(2^{x}-1\right) d x=\left.\frac{2^{x}-x}{\ln 2}\right|_{0} ^{\log _{2} n}=\frac{2^{\log _{2} n}-1}{\ln 2}=\frac{n-1}{\ln 2}=\Theta(n)
$$

(d) for (int $i=1$; $i<n$; $i=2 * i$)
for (int $j=i ; j<n ; j++$) ;
cout << "Hello" << endl;cd /home/larmore/Dropbox/Courses/CS477/S21

Let $\mathrm{k}=\log _{2} \mathrm{i}$; then $2^{\mathrm{k}}=\mathrm{i}$.

```
for (int k = 0; i < log_2 n; k++)
    for (int \(j=2 \wedge k ; j<n ; j++\) )
        cout << "Hello" << endl;
```

Let x be the continuous analog of k and y the continuos analog of j .

$$
\begin{aligned}
& \int_{x=0}^{\log _{2} n} \int_{y=2^{x}}^{n} d y d x=\int_{x=0}^{\log _{2} n}\left(n-2^{x}\right) d x=\left.\left(n x-\frac{2^{x}}{\ln 2}\right)\right|_{x=0} ^{\log _{2} n} \\
& =n \log _{2} n-\frac{2^{\log _{2} n}-1}{\ln 2}=n \log _{2} n-\frac{n-1}{\ln 2}=\Theta(n \log n)
\end{aligned}
$$

(e) for (int $i=n ; i>1 ; i=i / 2)$

```
        for(int j = i; j > 1; j--);
```

 cout << "Hello" << endl;
 Same as (c). $\Theta(n)$
(f) for (int i $=\mathrm{n}$; i > 1; i=i/2) for (int $j=n$; $j>i ; j--)$; cout << "Hello" << endl;

Same as (d). $\Theta(n \log n)$
2. These problems are harder than the ones above. Given the asymptotic complexity of each fragment in terms of n, using Θ.
(g) for (int i $=1$; i $<n$; i=2*i)
for (int $j=1 ; ~ j<i ; j=2 * j)$; cout << "Hello" << endl;

Hint: Use substitution. Let $m=\log n, k=\log i, l=\log j$.
for (int $k=0 ; k<m ; k++$) for (int l = 0; i < k; l++) cout << "Hello" << endl;
$\Theta\left(m^{2}\right)=\Theta\left(\log ^{2} n\right)$
(h) for (int $i=2$; $i<n ; i=i * i)$ cout << "Hello" << endl;

Hint: Use substitution. Let $\mathrm{m}=\log \mathrm{n}, \mathrm{k}=\log \mathrm{i}$.
Use the fact that $\log \left(x^{y}\right)=y \log x$

```
for(int k = 1; k < m; k=2*k)
```

 cout << "Hello" << endl;
 $\Theta(\log m)=\Theta(\log \log n)$
(i) for (int $i=2$; $i<n$; i=i*i)

```
        for(int j = 1; j < i; j = 2*j)
```

 cout << "Hello" << endl;
 Hint: Use substitution. Let $m=\log n, k=\log i, l=\log j$.

```
for(int k = 1; k < m; k=2*k)
    for(int l = 0; l < k; l++)
\Theta(m)=\Theta(logn)
```

(j) for(int i $=n$; i >1; i $=\log$ i)
cout << "Hello" << endl;
Use the substitution $m=\log ^{*} n, k=\log ^{*} i$
for (int k = m; k > 0; k--)

Added on February 5:

The recusive definition of $\log ^{*} x$ for any real number x is: $\log ^{*} x=0$ if $x \leq 1$
$\log ^{*} x=1+\log ^{*}(\log x)$ if $x>1$
Let i be the "old" value of i in the code, and $\bar{\imath}$ the "new" value of i, namely $\log i$. Let k be the old value of k and \bar{k} the new value of k. Thus
$m=\log ^{*} n$
$\bar{\imath}=\log i$
$k=\log ^{*} i$
$\bar{k}=\log ^{*} \bar{\imath}$
From the definition of $\log *$ we have:
$k=\log ^{*} i=1+\log ^{*} \log i=1+\log ^{*} \bar{\imath}=1+\bar{k}$. Thus $\bar{k}=k-1$, and the last parameter of the for statement is $k--$.

End Added Text

The solution is $\Theta(m)=\Theta\left(\log ^{*} n\right)$ where $\log ^{*}$ is the iterated logarithm. For any positive real number $x, \log ^{*} x$ is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1 .
We use the base 2 logarithm. In that case, the iterated algorithm is sometimes written as l^{*}.
i. What is $\log ^{*} 65536$? Answer: 4.
ii. What is $\log ^{*} 65537$? Answer: 5 .
iii. Let N be the number of baryons in the visible universe. (Neutrons and protons are baryons.) What is $\log ^{*} N$? Answer: 5.
iv. It has been seriously conjectured that the radius of the entire universe is 10^{100} times the radius of the visible universe! If that is true, what is $\log ^{*}$ of the number of baryons in the universe? Answer 5.
$\log ^{*}$ grows very slowly. However, it is not the slowest growing unbounded function that regularly arises in complexity theory. That honor goes to the inverse Ackermann function.
(k) for (int $i=2$; $i<n$; $i=i * i)$
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$)
cout << "Hello" << endl;

In my opinion, this is the hardest problem in this assignment. The time complexity of the code is O of one function of n and Ω of a different function of n, but is not Θ of any of the "usual" functions of n. Give both the O and the Ω answers, both of which are "usual" functions. ${ }^{1}$
Answer: The time complexity both $O(n)$ and $\Omega(\sqrt{n})$.

[^0]The outer loop iterates $O(\log \log n)$ times. For each value of i used during the outer loop, , the inner loop iterates I times. Those values of i are numbers of the form $2^{2^{k}}$ for integers $k \geq 0$. That is,
$2^{2^{0}}=2$,
$2^{2^{1}}=2^{2}=4$,
$2^{2^{2}}=4^{2}=16$,
$2^{2^{3}}=16^{2}=256$,
$2^{2^{4}}=256^{2}=65536$,
$2^{2^{5}}=65536^{2}=4294967296$.
Since i increases rapidly, the time complexity of the code is dominated by the largest value of i generated in the outer loop, which is the largest value of $2^{2^{k}}$ less than n. Let's call that value I. For example, if $4<n \leq 16, I=4$; if $16<n \leq 256, I=16$; and if $256<n \leq 65536, I=256$; and so forth. Note that $I<n \leq I^{2}$, which implies that $\sqrt{n} \leq I<n$. The time complexity of the code is $\Theta(I)$, and we obtain our result.
3. Solve each of the following recurrences, giving the answer as Θ of a function of n.
(l) $F(n)=F(n / 2)+n^{2}$

Master theorem: $A=1, B=2, C=2$: Note that $A<B^{C}$.
Thus $F(n)=\Theta\left(n^{C}\right)=\Theta\left(n^{2}\right)$
(m) $F(n)=F(n / 3)+1$

Master theorem: $A=1, B=3, C=0$: Note that $A=B^{C}$.
Thus $F(n)=\Theta\left(n^{C} \log n\right)=\Theta(\log n)$
(n) $F(n)=16 F(n / 4)+n^{2}$

Master theorem: $A=16, B=4, C=2$. Note that $A=B^{C}$.
Thus $F(n)=\Theta\left(n^{C} \log n\right)=\Theta\left(n^{2} \log n\right)$
(o) $F(n)=F(n-1)+n^{5}$

Anti-derivative method: $\frac{F(n)-F(n-1)}{1}=n^{5}$
$F^{\prime}(n)=\Theta\left(n^{5}\right)$
$F(n)=\Theta\left(n^{6}\right)$
(p) $F(n)=F(n-\log n)+\log n$

Anti-derivative method: $\frac{F(n)-F(n-\log n)}{\log n}=\frac{\log n}{\log n}$
$F^{\prime}(n)=\Theta(1)$
$F(n)=\Theta(n)$
(q) $F(n)=16 F(n / 4)+n$

Master theorem: $A=16, B=4, C=1$. Note that $A>B^{C}$, and that $\log _{B} A=2$. Thus $F(n)=\Theta\left(n^{\log _{B} A}\right)=\Theta\left(n^{2}\right)$.

[^0]: ${ }^{1}$ By usual functions I mean the functions we have discussed so far in class, which include polynomials, logarithms, iterated logarithms, powers of logarithms, roots, and even the iterated logarithm log*.

