University of Nevada, Las Vegas Computer Science 477/677 Spring 2021 Practice for Final Examination: Part I

This portion of the practice final is 205 points.

1. True or False. [5 points each]
(a) ------- Computers are so fast today that complexity theory is only of theoretical, but not practical, interest.
(b) _-_-_-_ There is a Las Vegas version of quicksort whose expected time complexity is $O(n \log n)$.
(c) ------- There is no comparison-based sorting algorithm for 5 items which uses fewer than 7 comparisons in the worst case.
(d) _-_---- There is a deterministic algorithm which finds the median of a set of n numbers in $O(n)$ time.
2. Fill in the blanks. [5 points each blank.]
(a) What is the worst-case time complexity of binary search on a sorted array of size n ? (Use Θ notation.)
\qquad
(b) Heapsort is a sophisticated version of which one the following three simple algorithms - selection sort, insertion sort, bubblesort.
\qquad
(c) Any comparison-based sorting algorithm for 5 items must use \qquad comparisons in the worst case. (Exact answer, please.)
(d) Treesort is a sophisticated version of which one the following three simple algorithms - selection sort, insertion sort, bubblesort.
\qquad
(e) Name two well-known $\Theta(n \log n)$ time sorting algorithms.
\qquad
\qquad
3. Solve the recurrences. Give asymptotic answers in terms of n, using either Θ, Ω, or O, whichever is most appropriate. Use the master theorem or the anti-derivative method in each case. You may need to use substitution. [10 points each.]
(a) $F(n)>=4 F(n / 2)+n^{2}$.
(b) $G(n)=G(n-1)+n^{2}$
(c) $H(n)=2 H(\sqrt{ } n)+\log n$.
(d) $J(n)<J(n-\sqrt{ } n)+1$. (Hint: you do not need to use substitution.)
(e) $K(n)<=2 K(n / 4)+\sqrt{ } n$ (Hint: you do not need to use substitution.)
(f) $L(n)=L(\log n)+1$
(g) $G(n)>=G(\sqrt{ } n)+1$
(h) $F(n)=F(n / 2)+F(n-1)+1$ (Hint: Of course there is a solution, but I know of no way to express the solution in closed form. If anyone can come up with any insight on this problem, I'll be grateful.)
4. [15 points] Consider the following $\mathrm{C}++$ code.
```
void martha(int n)
    {
        for(int i = 1; i < n; i = 2*n)
        cout << "Hello, George!" << endl;
    }
void george(int n)
    {
        for(int i = n; i > 1; i = i/2)
        martha(i);
    }
```

What is the time complexity of george(n)?
5. [30 points] Walk through polyphase mergesort, where the input file is as given below. ABQXDFMGLKYT
6. [20 points] The following code implements an algorithm we've discussed in class, on an array A. What algorithm does the code implement?

```
void swap(int&x,int&y)
    {
        int temp = x;
        x = y;
        y = temp;
    }
void main()
    {
        for(int i = 0; i < n; i++)
        for(int j = i+1; j < n; j++)
            if(A[i] > A[j]) swap(A[i],A[j]);
    }
```

7. [20 points]
```
int product(int a, int b)
    {
    assert(b >= 0);
        int c = a;
        int d = b;
        int total = 0;
        while(b > 0)
            {
                if(b%2) total = total + a;
            a = 2*a;
            b = b/2;
        }
    return total;
}
```

(a) What does this function do?
(b) What is the loop invariant of the while loop?

