University of Nevada, Las Vegas Computer Science 477/677 Spring 2021 Practice for Final Examination: Part II

This portion of the practice final is 240 points.

- 1. Give the asymptotic time complexity, in terms of n, of each of these code fragments. (10 points each)
 - (a) for(int i = 1; i < n; i=2*i)

for(int
$$j = 1; j < i; j++)$$

(b) for(int i = 1; i < n; i=2*i)

for(int
$$j = i; j < n; j++)$$

(c) for(int i = 1; i < n; i++)

for(int
$$j = i; j > 0; j = j/2$$
)

(d) for(int i = 1; i < n; i++)

for(int
$$j = n$$
; $j > i$; $j = j/2$)

- (e) for(int i = 1; i < n*n; i++)
- (f) for(int i = 1; i*i < n; i++)
- (g) for(int i = 1; i < n; i++)

for(int
$$j = 0$$
; $j < n$; $j = j+i$)

(h) This problem requires two answers. Its time complexity is not Θ of any of the usual functions we deal with. Instead, it's Ω of some function of n and O of some other function of n. Give both.

- 2. Give asymptotic solutions to the following recurrences.
 - (a) F(n) = F(n/2) + F(n/3) + n;
 - (b) $G(n) = G(n/4) + 2G(n/16) + \sqrt{n}$;
 - (c) $H(n) = H(n \log n) + \log n$
- 3. [10 points] Draw an acyclic directed graph of 6 vertices and 15 arcs.

4. [10 points] Draw a directed graph with exactly two strong components, each of which has 4 vertices. The graph must have a "source" vertex s from which every vertex is reachable.

5. [10 points] Draw a planar graph with 5 vertices and 10 edges.

6.	[20 points] Write pseudocode for the Floyd-Warshall algorithm.
	Write pseudocode for the Bellman-Ford algorithm. Be sure to encorporate the shortcut.
7.	[20 points] If you need to solve the all-pairs problem for a weighted graph with n nodes and m edges, which algorithm would you use?

- 8. [20 points] Write the Polish and reverse Polish expressions equivalent to a*(-(b-c)*d).
- 9. [20 points] Prove that there is no comparison-based algorithm for sorting six items that never uses more than nine comparisons.

10. [20 points]

I made a mistake writing this code in Part I of the practice final. Here is the correct version.

```
int product(int a, int b)
{
   assert(b >= 0);
   int c = a;
   int d = b;
   int total = 0;
   while(d > 0)
   {
      if(d%2) total = total + c;
      c = 2*c;
      d = d/2;
   }
   return total;
}
```

- (a) What does this function do?
- (b) What is the loop invariant of the while loop?