Levenshtein Edit Distance

Given two strings u and v over an alphabet Σ , the <u>Levenstein distance</u> from u to v (or from v to u) is the number of edit steps needed to change u to v, where an edit step is one of the following:

- 1. Delete a symbol.
- 2. Insert a symbol.
- 3. Replace a symbol.

For examle, the Levenshtein distance from WARM to BEAR is 3, since we can change WARM to BEAR with three edit steps:

WARM WAR delete BAR replace BEAR insert

Levenstein distance is computed using dynamic programming. Let n be the length of u and m the length of v. Oet u[i] be the prefix of u of length i and let v[j] be the prefix of v of length j, for $0 \le i \le n$ and $0 \le j \le m$.

Subproblem(i,j) is defined to be the computation of the Levenstein distance from u[i] to v[j], which we call L[i,j]. here are (n+1)(m+1) subproblems. The final answer is L[n,m].

The program is as follows. Let u_i , v_i be the i^{th} symbol of u and the j^{th} symbol of v, respectively. The program is as follows:

```
For all i let L[i,0] = i

For all j let L[0,j] = j

For all 1 \le i \le n

For all 1 \le j \le n

For all 1 \le j \le n

If (u[i] = v[j])

L[i,j] = \min\{L[i-1,j]+1,L[i,j-1]+1,L[i-1,j-1]\}

else

L[i,j] = \min\{L[i-1,j]+1,L[i,j-1]+1,L[i-1,j-1]+1\}
```

Example

The following matrix shows the values of L.

			В	E	A	R
		0	1	2	3	4
	0	0	1	2	3	4
W	1	1	1	2	3	4
A	2	2	2	2	2	3
R	3	3	3	3	3	2
Μ	4	4	4	4	4	3

The Levenshein distance is L[4,4] = 3

Another Example

Compute the Levenshtein edit distance from abdxfyg to abcdefg.

			a	b	c	d	е	f	g
		0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7
a	1	1	0	1	2	3	4	5	6
b	2	2	1	0	1	2	3	4	5
d	3	3	2	1	1	1	2	3	4
X	4	4	3	2	2	2	2	3	4
f	5	5	4	3	3	3	3	2	3
у	6	6	5	4	4	4	4	3	3
g	7	7	6	5	5	5	5	4	3

The Levenstein distance is L[7,7]=3. The steps are:

- 1. insert c between b and d,
- 2. change x to e,
- 3. delete y.