Levenshtein Edit Distance

Given two strings u and v over an alphabet Σ, the Levenstein distance from u to v (or from v to u) is the number of edit steps needed to change u to v, where an edit step is one of the following:

1. Delete a symbol.
2. Insert a symbol.
3. Replace a symbol.

For examle, the Levenshtein distance from WARM to BEAR is 3, since we can change WARM to BEAR with three edit steps:

WARM WAR delete BAR replace BEAR insert
Levenstein distance is computed using dynamic programming. Let n be the length of u and m the length of v. Oet $u[i]$ be the prefix of u of length i and let $v[j]$ be the prefix of v of length j, for $0 \leq i \leq n$ and $0 \leq j \leq m$.

Subproblem(i,j) is defined to be the computation of the Levenstein distance from $u[i]$ to $v[j]$, which we call $L[i, j]$. here are $(\mathrm{n}+1)(\mathrm{m}+1)$ subproblems. The final answer is $L[n, m]$.

The program is as follows. Let u_{i}, v_{i} be the $i^{\text {th }}$ symbol of u and the $j^{\text {th }}$ symbol of v, respectively. The program is as follows:

For all i let $L[i, 0]=i$
For all j let $L[0, j]=j$
For all $1 \leq i \leq n$
For all $1 \leq j \leq n$
For all $1 \leq j \leq n$

$$
\begin{aligned}
& \operatorname{If}(\mathrm{u}[\mathrm{i}]=\mathrm{v}[\mathrm{j}]) \\
& \quad \mathrm{L}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{L}[\mathrm{i}-1, \mathrm{j}]+1, \mathrm{~L}[\mathrm{i}, \mathrm{j}-1]+1, \mathrm{~L}[\mathrm{i}-1, \mathrm{j}-1]\} \\
& \text { else } \\
& \qquad \mathrm{L}[\mathrm{i}, \mathrm{j}]=\min \{\mathrm{L}[\mathrm{i}-1, \mathrm{j}]+1, \mathrm{~L}[\mathrm{i}, \mathrm{j}-1]+1, \mathrm{~L}[\mathrm{i}-1, \mathrm{j}-1]+1\}
\end{aligned}
$$

Example

The following matrix shows the values of L.

			B	E	A	R
		0	1	2	3	4
	0	0	1	2	3	4
W	1	1	1	2	3	4
A	2	2	2	2	2	3
R	3	3	3	3	3	2
M	4	4	4	4	4	3

The Levenshein distance is $L[4,4]=3$

Another Example

Compute the Levenshtein edit distance from abdxfyg to abcdefg.

			a	b	c	d	e	f	g
		0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7
a	1	1	0	1	2	3	4	5	6
b	2	2	1	0	1	2	3	4	5
d	3	3	2	1	1	1	2	3	4
x	4	4	3	2	2	2	2	3	4
f	5	5	4	3	3	3	3	2	3
y	6	6	5	4	4	4	4	3	3
g	7	7	6	5	5	5	5	4	3

The Levenstein distance is $L[7,7]=3$. The steps are:

1. insert c between b and d ,
2. change x to e ,
3. delete y.
