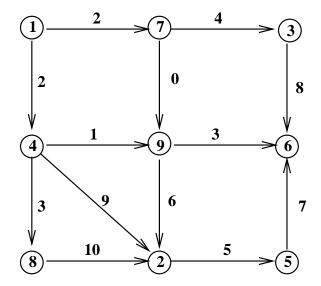
The Floyd-Warshall Algorithm


UNLV: Analysis of Algorithms Lawrence L. Larmore

The All Pairs Minimum Path Problem

We are given a weighted directed graph G = (V, E, W). That is, if $e = (u, v) \in E$, then W(e) = W(u, v) is the weight of the edge e. A solution to the problem consists of arrays $\{V[u, v]\}_{u,v \in V}$ and $\{back[u, v]\}_{u,v \in V}$, such that V[u, v] is the minimum weight of any path from u to v, while back[u, v] is the next-to-the-last vertex of one of those minimum paths. There is no solution if G has a negative cycle. For convenience, we assume that the vertices of G are the integers $1, \ldots n$.

```
for all 1 i n
  V[i,i] := 0
  back[i,i] := * \\ undefined
endfor
for all 1 <= i <= n
   for all 1 \le j \le n
      if there is an edge from i to j
         back[i,j] := i
         V[i,j] := W(i,j)
      else
         back[i,j] := * \\ undefined
         V[i,j] := infinity
      endif
   endfor
endfor
for all 1 <= j <= n
   for all 1 <= i <= n
      for all 1 <= k <= n
         temp := V[i,j] + V[j,k]
         if temp < V[i,k]
            V[i,k] := temp
            back[i,k] := back[j,k]
         endif
      endfor
   endfor
endfor
```

Output of the Floyd–Warshall Algorithm

We consider the Floyd-Warshall algorithm on the graph illustrated above. The arrays V and back are initialized below.

V	1	2	3	4	5	6	7	8	9
1	0	8	∞	2	∞	∞	2	∞	∞
2	∞	0	∞	∞	5	∞	∞	∞	∞
3	∞	∞	0	∞	∞	8	∞	∞	∞
4	∞	9	∞	0	∞	∞	∞	3	1
5	∞	∞	∞	∞	0	7	∞	∞	∞
6	∞	8	∞	∞	∞	0	∞	∞	8
7	∞	∞	4	∞	∞	∞	0	∞	0
8	∞	10	∞	∞	∞	∞	∞	0	∞
9	∞	6	∞	∞	∞	3	∞	∞	0

back	1	2	3	4	5	6	7	8	9
1	\perp	\perp	\perp	1	\perp	\perp	1	\perp	\vdash
2	\perp	\perp	\perp	\perp	2	\perp	\perp	1	\perp
3	\perp	1	\perp	T	\perp	3	\perp	1	\perp
4	1	4	\perp	1	1	1	\perp	4	4
5	\perp	1	\perp	1	\perp	5	\perp	1	\perp
6	1	1	\perp	1	1	1	\perp	1	\perp
7	1	1	7	1	1	1	\perp	1	7
8		8	T	T		T	T	T	\perp
9	1	9	\perp	1	1	9	\perp	1	1

What will V and back be after one iteration of the outer loop?

We now show V and back after two iterations of the outer loop.

V	1	2	3	4	5	6	7	8	9
1	0	∞	∞	2	∞	∞	2	∞	∞
2	∞	0	∞	∞	5	∞	∞	∞	∞
3	∞	8	0	∞	∞	8	∞	∞	8
4	∞	9	∞	0	14	∞	∞	3	1
5	∞	∞	∞	∞	0	7	∞	∞	∞
6	∞	∞	∞	∞	∞	0	∞	∞	∞
7	∞	∞	4	∞	∞	∞	0	∞	0
8	∞	10	∞	∞	15	8	∞	0	8
9	∞	6	∞	∞	11	3	∞	∞	0

back	1	2	3	4	5	6	7	8	9
1	上	1	T	1	1	1	1	1	T
2	1	1	T	T	2	T	T	T	T
3		T	T	T	1	3	T	T	T
4		4	\perp	\perp	2	\perp	\perp	4	4
5		1	\perp	1	1	5	\perp	1	T
6	上	1	T	T	1	1	\perp	T	T
7	T	1	7	1	1	1	\perp	1	7
8		8	1	1	2	T	1	1	
9	上	9	1	丄	2	9	丄	丄	上

Fill in the values of the arrays after 6 iterations of the outer loop. (For convenience, do not write ∞ or \perp ; simply leave the entry blank.)

V	1	2	3	4	5	6	7	8	9
1	0								
2		0							
3			0						
4				0					
5					0				
6						0			
7							0		
8								0	
9									0

back	1	2	3	4	5	6	7	8	9
1									
2									
3									
4									
5									
6									
7									
8									
9									

Fill in the arrays after 8 iterations of the outer loop. (For convenience, do not write ∞ or \bot ; simply leave the entry blank.)

V	1	2	3	4	5	6	7	8	9
1	0								
2		0							
3			0						
4				0					
5					0				
6						0			
7							0		
8								0	
9									0

back	1	2	3	4	5	6	7	8	9
1									
2									
3									
4									
5									
6									
7									
8									
9									