University of Nevada, Las Vegas Computer Science 456/656 Spring 2022 Assignment 4: Due Wednesday March 30 2022

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from our graduate assistant telling you how to turn in the assignment.

Throughout this assignment, you may assume that a language is recursively enumerable if and only if it is accepted by some machine. Recall that "L is recursively enumerable (RE)" means that there is a machine that enumerates L.

1. True/False/Open

- (a) _____ Every subset of a regular language is regular.
- (b) _____ If L_1 is \mathcal{NP} -complete and L_2 is \mathcal{NP} , there is a \mathcal{P} -TIME reduction of L_1 to L_2 .
- (c) If L_1 is \mathcal{NP} -complete and L_2 is \mathcal{NP} and there is a \mathcal{P} -TIME reduction of L_1 to L_2 , then L_2 is \mathcal{NP} -complete.
- (d) If L is \mathcal{NP} -complete, there is no polynomial time algorithm which decides L.
- (e) _____ Every \mathcal{NP} language is decidable.
- (f) $\mathcal{NP} = \operatorname{co-}\mathcal{NP}.$
- (g) If L_1 is undecidable and there is a recursive reduction of L_1 to l_2 , then L_2 is undecidable.
- (h) _____ The CF grammar equivalence problem is recursively enumerable.
- (i) _____ If a language L is decidable, then there must be a machine that enumerates L in canonical order.
- (j) _____ If there is a machine that enumerates a language L, then L must be decidable.
- (k) _____ If there is a machine that accepts a language L, then L must be recursively enumerable (RE).
- (1) _____ If a language L is decidable, there is a machine that enumerates L.
- (m) _____ If there is a machine that enumerates a language L in canonical order, then L must be decidable.
- (n) If $f: \mathcal{N} \to \mathcal{N}$ is a one-to-one and onto function, where \mathcal{N} is the natural numbers (positive integers) we define the *inverse* of f to be a function $g: \mathcal{N} \to \mathcal{N}$ such that f(g(n)) = n and g(f(n)) = n for all $n \in \mathcal{N}$. There exists a one-to-one onto function $f: \mathcal{N} \to \mathcal{N}$ which can be computed in polynomial time whose inverse cannot be computed in polynomial time. (Such a function is called a *one-way* function.)
- (o) _____ There exists a recursive function T such that, for any provable statement P, there is a proof of P whose length does not exceed T(n), where n is the length of P.

2.	Consider	the	following	CF	grammar	and	LALR	parser.
----	----------	-----	-----------	----	---------	-----	------	---------

	ACTION							GOTO	
1. $S \rightarrow i_2 S_3$		a	i	e	w	\$	S		
$2. S \to i_2 S_3 e_4 S_5$	0	s8	s2		s6		1		
$3. S \to w_6 S_7$	1					halt			
4. $S \rightarrow a_8$	2	s8	s2		s6		3		
	3			<i>s</i> 4		r1			
	4	s8	s2		<i>s</i> 6		5		
	5			r2		r2			
	6	s8	s2		<i>s</i> 6		7		
	7				r3	r3			
	8			r4		r4			

Walk through the computation of this parser where the input string is *iiwaeia*.

3. Let L be a decidable language. Write a program in pseudo-code that enumerates L in canonical order.

4. Let $L = \{\langle G_1 \rangle \langle G_2 \rangle : G_1, G_2 \text{ are CF grammars that are not equivalent}\}$. Prove that L is recursively enumerable. Assume that the terminal alphabet of both grammars is Σ .

5. Prove that the halting problem is undecidable.

6. Given that 3-SAT is \mathcal{NP} -complete, prove, by reduction, that IND, the independent set problem, is also \mathcal{NP} -complete.