University of Nevada, Las Vegas Computer Science 456/656 Spring 2022 Assignment 4: Due Wednesday March 302022

Name:
You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from our graduate assistant telling you how to turn in the assignment.

Throughout this assignment, you may assume that a language is recursively enumerable if and only if it is accepted by some machine. Recall that " L is recursively enumerable (RE)" means that there is a machine that enumerates L.

1. True/False/Open
(a) ___ Every subset of a regular langugage is regular.
(b) If L_{1} is $\mathcal{N} \mathcal{P}$-complete and L_{2} is $\mathcal{N} \mathcal{P}$, there is a \mathcal{P}-TIME reduction of L_{1} to L_{2}.
(c) If L_{1} is $\mathcal{N} \mathcal{P}$-complete and L_{2} is $\mathcal{N P}$ and there is a \mathcal{P}-time reduction of L_{1} to L_{2}, then L_{2} is $\mathcal{N P}$-complete.
(d) If L is $\mathcal{N} \mathcal{P}$-complete, there is no polynomial time algorithm which decides L.
(e) ___ Every $\mathcal{N P}$ language is decidable.
(f)
(g) If L_{1} is undecidable and there is a recursive reduction of L_{1} to l_{2}, then L_{2} is undecidable.
(h) __ The CF grammar equivalence problem is recursively enumerable.
(i) ___ If a language L is decidable, then there must be a machine that enumerates L in canonical order.
(j) ___ If there is a machine that enumerates a language L, then L must be decidable.
(k) ___ If there is a machine that accepts a language L, then L must be recursively enumerable (RE).
(1) If a language L is decidable, there is a machine that enumerates L.
(m) ___ If there is a machine that enumerates a language L in canonical order, then L must be decidable.
(n) \qquad If $f: \mathcal{N} \rightarrow \mathcal{N}$ is a one-to-one and onto function, where \mathcal{N} is the natural numbers (positive integers) we define the inverse of f to be a function $g: \mathcal{N} \rightarrow \mathcal{N}$ such that $f(g(n))=n$ and $g(f(n))=n$ for all $n \in \mathcal{N}$. There exists a one-to-one onto function $f: \mathcal{N} \rightarrow \mathcal{N}$ which can be computed in polynomial time whose inverse cannot be computed in polynomial time. (Such a function is called a one-way function.)
(o) ___ There exists a recursive funtion T such that, for any provable statement P, there is a proof of P whose length does not exceed $T(n)$, where n is the length of P.
2. Consider the following CF grammar and LALR parser.
3. $S \rightarrow i_{2} S_{3}$
4. $S \rightarrow i_{2} S_{3} e_{4} S_{5}$
5. $S \rightarrow w_{6} S_{7}$
6. $S \rightarrow a_{8}$
ACTION

	a	i	e	w	$\$$	S
0	$s 8$	$s 2$		$s 6$		1
1					halt	
2	$s 8$	$s 2$		$s 6$		3
3			$s 4$		$r 1$	
4	$s 8$	$s 2$		$s 6$		5
5			$r 2$		$r 2$	
6	$s 8$	$s 2$		$s 6$		7
7				$r 3$	$r 3$	
8			$r 4$		$r 4$	

Walk through the computation of this parser where the input string is iiwaeia.
3. Let L be a decidable language. Write a program in pseudo-code that enumerates L in canonical order.
4. Let $L=\left\{\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle: G_{1}, G_{2}\right.$ are CF grammars that are not equivalent $\}$. Prove that L is recursively enumerable. Assume that the terminal alphabet of both grammars is Σ.
5. Prove that the halting problem is undecidable.
6. Given that 3-SAT is $\mathcal{N} \mathcal{P}$-complete, prove, by reduction, that IND, the independent set problem, is also $\mathcal{N} \mathcal{P}$-complete.

