
Linear Range Queries

Suppose that a number of values are stored in a line, a plane, or some other space. A range query consists

of giving a range, such as in interval in a line, a square or other region in a plane; in general, some subset of

the space. The answer to the query is the sum of the numbers in that range. Alternatively, the query could be

for the minimum or maximum of the numbers in the range, or any other appropriate function of the numbers.

In our discussion, we will refer to the “sum,” with the understanding that the query could be for some other

function.

We will restrict our attention to queries in a line, where there are only finitely many numbers on the line,

each at some point. Without loss of generality, each number xi can be thought of as being the value of the

interval [i− 1, i], the query Q(p, q) = Q([i, j]), for 0 ≤ p < q ≤ n, returns
∑q

i=p+1 xi. We can replace addition

by any associative operation, such as min or max. Thus we have Q(i, j) + Q(j, k) = Q(i, k) for integers

i < j < k. Throughout our discussion, we assume we are given interval values x1, . . . xn for some n.

Range Query Data Structures

Our solution to the range query problem consists of building a data structure which hold values of Q(I) for I

in a selected set of intervals. Query(J) for any interval is then the sum
∑k

i=1 Q(Ii) where each Q(Ii) is stored

in the data structure, and J is the disjoint union
∐k

i=1 Ii

If Subtraction is Permitted

In the special case where operation is actually addition we can build a structure of size Θ(n) where each query

can be answered with only two fetches to the structure. Simply let Si be the sum of the first i entries. The

query QI, for I = (i, j), returns simply Sj − Si−1. However, subtraction is not always available, since the

operation could be min, or max, or some other associative operation.

Time Space Tradeoff

There is a tradeoff between the size of the data structure, i.e. the number of query value stored, and the time

it takes to execute a query, measured by the number of query values needed to obtain an answer. For example,

if we store the values of all intervals, structure has size Θ(n2), and a query needs to look at only one stored

value. At the other extreme, if we are allowed to fetch n intervals during a query, the data structure contains

all intervals of length 1. Such a structure is clearly pointless.

Union of Two Intervals

The simplest structer that is an improvement over the trivial O(n2) size case is a data structure that stores

Θ(n log n) intervals and their query values, and where each interval J is the union of at most two of the stored

intervals. We now describe the structure.



Ranks

Each integer in 1 . . . n has a rank. If i = p2k, where p is odd and k is an integer, we define rank(i) = k. Thus

0 ≤ rank(i) ≤ ⌊log2 n⌋ for all i in the range. We assign rank(0) = ∞.

List of Stored Intervals

For every stored interval [p, q], rank(p) 6= rank(q). We say [p, q] is a left interval of rank k if rank(q) = k and

rank(i) < k for all p ≤ i < q. We say [p, q] is a right interval of rank k if rank(p) = k and rank(i) < k for all

p < i ≤ q. We also say that [0, q] is a right interval of rank ∞, for any 1 ≤ q ≤ n. The data structure contains

all left and right intervals and their values. For each 0 ≤ k ≤ ⌊log2 n⌋, there are fewer than n left intervals

and fewer than n right intervals of rank k. There are also n− 1 right intervals of rank ∞. The size of the data

structure is Θ(n log n).

5 3 21 5 3 2 1 06 3 2 4 5 2 0 1

8

9

4

7

9

12

17

5

6

9

11

2

2

3

5

1

12 14

9 9

7 5

14

16

16

17

17

19

20

23

28

Queries

We now compute Q(p, q) for 0 ≤ p < q ≤ n. If [p, q] is a left or right interval, the value of the query is in the

data structure. Otherwise, there is some r such that p < r < q and r has the maximum rank in that interval.

Then Q(p, q) = Q(p, r) +Q(r, q), which means we need only two fetches from the data structure.

Union of Three Intervals

We now define a data structure that stores Θ(n log log n) intervals and their query values, and where each

interval is the union of at most three of the stored intervals.

Ranks

Each integer in 0 . . . n has a rank. If i = p2k, where p is odd and k > 0 is an integer, we define rank(i) = ⌊log2 k⌋.

Thus 0 ≤ rank(i) ≤ ⌊log2 log2 n⌋ for all 1 ≤ i ≤ n. If i is odd, let rank(i) = −1. Let rank(0) = ∞.

2



List of Stored Intervals

We say [p, q] is a left interval of rank k if rank(q) = k and rank(i) < k for all p ≤ i < q. We say [p, q] is a right

interval of rank k if rank(p) = k and rank(i) < k for all p < i ≤ q. We also say that [0, q] is a right interval

of rank ∞, for any 1 ≤ q ≤ n. We say that [p, q] is a bridge interval of rank k if rank(p) = rank(q) = k, and

rank(i) ≤ k for all p < i < q. Our data structure stores all left, right, and bridge intervals, and their values.

There are fewer than n left intervals of each rank, and fewer than n right intervals of each rank. There

are no bridge intervals of rank -1 or 0. If [p, q] is a bridge interval of any rank, we say that p ∼ q. Note

that ∼ is an equivalence relation. Each equivalence class of integers of rank k ≥ 1 under that relation is an

arithmetic sequence consisting of at most 22
k

− 1 consecutive multiples of 22
k

. Thus, there are fewer than n

bridge intervals of rank k, hence fewer than n⌊log2 log2 n⌋ bridge intervals altogether. The number of stored

intervals is thus O(n log log n), actually Θ(n log log n).

Queries

We need to show that every query interval is the disjoint union of at most three intervals stored in our data

structure. Let Q(p, q) be a query. We define the rank of that query to be the maximum rank of any
[

i∈

[p,q]

]

.

Let k = rank(k). There are several cases.

1. If rank(p) = rank(q) = k, then [p, q] is a bridge interval.

2. If rank(p) = k and rank(q) < k, let r be the maximum integer of rank k in [p, q]. If r = p, then [p, q] is

a right interval. Otherwise, [p, q] is the disjoint union of the bridge interval [p, r] and the right interval

[r, q].

3. The case rank(q) = k, rank(p) < k, is similar to the previous case.

4. If rank(p) < k, rank(q) < k and r is the only integers of rank k in [p, q], then [p, q] is the disjoint union

of the left interval [p, r] and the right interval [r, q].

5. If rank(p) < k, rank(q) < k, and there are two or more integers of rank k in the interval [p, q], let r and

s be the minimum and maximum integers of rank k in the interval. Then [p, q] is the disjoint union of

the left interval [p, r], the bridge interval [r, s], and the right interval [s, q].

Four or More Intervals

As we increase the number of intervals we are allowed to fetch during a query, the data structure gets smaller.

If a query is allowed to fetch four values from the data structure, we can solve the problem using a data

structure of size Θ(n log∗ n). The construction is far more complex than any of the previous constructions.

We might ask how to “balance” our solution: what is the minimum m such that there are at most m

intervals fetched during each query and that the data structure contains nm intervals? It turns out that

m = Θ(α(n)), where α is the (notorious) inverse Ackermann function. That is, we can store Θ(nα(n)) query

values, and each query requires combining no more than α(n) stored values.

3


