
A Topological Sorting Algorithm

UNLV: Analysis of Algorithms Lawrence L. Larmore

Topological Order

Given a directed graph G = (V,E), a topological ordering of G is an ordering “<” such that u < v

if (u, v) ∈ E. If G is acyclic it has at least one topological order, but if G is cyclic, i.e., has a
cycle, it does not have a topological order.

The algorithm written below writes the vertices of G in topological order, provided G is acyclic.
The algorithm assumes G is already represented by both in-neighbor lists and out-neighbor lists.

Q := EmptyQueue

for all v in V

NumSource[v] := Indegree(v)

if (NumSource[v] = 0)

Insert(Q,v)

endif

endfor

while not Empty(Q) do

u := Dequeue(Q)

Write(u)

for all w in OutNbrs(u) do

NumSource[w] := NumSource[w] - 1

if (NumSource[w] = 0)

Insert(Q,w)

endif

endfor

endwhile

if (not Empty(Q))

Write(’ The graph has a cycle.’)

endif

Note that I am using a queue. You could use a stack instead, in fact, you could use any priority
queue.

The running time of this algorithm is O(n +m). If G is cyclic, the algorithm will halt with the
queue not empty.

1


