## University of Nevada, Las Vegas Computer Science 477/677 Spring 2022

Answers for Examination March 23, 2022

1. True or False. [5 points each]
(a) $\mathbf{T}$ A binary search tree is a search structure.
(b) $\mathbf{T}$ A minheap is a priority queue.
(c) $\mathbf{F}$ A good programmer would never store data in an unordered list.
2. Fill in the blanks.
(a) [10 points] $\Theta(n)$ What is the asymptotic complexity of merging two sorted lists, each of length $n$ ? Use $\Theta$ notation.
(b) [10 points] A stack is a priority queue in which the most recently inserted item has priority.
(c) [10 points] Dijkstra's algorithm does not allow the weight of any arc to be negative.
(d) [10 points] binary search is a divide and conquer algorithm which implements the operator find for an ordered list.
(e) [10 points] fetch and store are operators of the ADT array.
(f) [10 points] The items in a priority queue represent unfulfilled obligations
(g) [10 points] The worst case number of comparisons of any comparison/exchange sorting algorithm is $\Omega(n \log n)$.
(h) [10 points] radix sort is a sorting algorithm which does not use the comparison/exchange model of computation.
(i) [20 points] quicksort and mergesort are divide-and-conquer sorting algorithms.
(j) [20 points] What is the asymptotic time complexity for the Bellman-Ford algorithm on a weighted directed graph with $n$ vertices and $m$ edges, where, for some number $p$ and for every vertex $x$, the least weight path from the source to $x$ has no more than $p$ edges? $O(m p)$
3. [20 points] Walk through Dijkstra's algorithm for the following weighted directed graph.


|  | S | A | B | C | D | E | F | G | H | I | K |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | 0 | 3 | 2 | 8 | 95 | 107 | 7 | 8 | 8 |  |  |  | 3 |
| ack |  | S | S | S | $B$ A |  | D | E | F | H | I |  | I |

4. [20 points] Write pseudocode for the Floyd-Warshall algorithm. We assume that $\mathrm{W}[\mathrm{i}, \mathrm{j}]$ is the weight of the edge from i to $k$, if there is one. if there isn't one, we assum $\mathrm{W}[\mathrm{i}, \mathrm{j}]=\infty$.
```
for all i and all j
    {
        V[i,k] = W[i,j];
        back[i,j] = i;
    }
for all i V[i,i] = 0;
for all j
    for all i and all k in either order
        {
            temp = V[i,j]+V[j,k];
            if (temp < V[i,k])
                {
                    V[i,k] = temp;
                    back[i,k] = back[j,k];
            }
    }
```

5. [20 points] What is the purpose of the function george below? Multiplication

Give a loop invariant for the main loop.

```
rslt +ym = xn
    int george(int x, int n)
    {
        // input condition: n >= 0
        int y = x;
        int m = n;
        int rslt = 0;
        while(m > 0)
        {
            if(m%2) // m is odd
            {
                m = m-1;
            rslt = rslt + y;
            }
            else
                {
                    m = m/2;
                    y = y+y;
            }
            cout << rslt;
        }
    }
```

6. Name each of these algorithms. 10 points each.
(a) quicksort Pick an element $P$ from a set $S$, then partition S into two parts: those items which are less than $P$ and those greater than $P$. Recorsively sort each part, and combine them to form a sorted list.
(b) mergesort Divide a set $S$ abitrarily into two equal parts. Recursively sort each part, then combine the two sorted parts to obtain a sorting of $S$.
(c) binary search Given a sorted set $S$ and an item $x$, you need to determine whether $x \in S$. Pick one element, say $m$, out of $S$. If $m=x$, you are done. If $m<x$, discard $m$ and all items of $S$ which are greater then $m$, while if $x>m$, discard $m$ all items which are all items of $S$ which are less then $m$. Keep doing this until you either find $x$ or you have discarded all items of $S$.
(d) treesort Given a set $S$, create an empty binary search tree $T$. Insert the items of $S$ into $T$ one at a time. Finally, visit and print the items of $T$ in left-to-right order, also called inorder.
(e) selection sort Given a set $S$, delete the least element of $S$ and print it. Then delete the least remaining element of $S$ and print it. Keep going until you have deleted and printed all elements of $S$.
(f) linear search Look at each item in a list, starting at the head. If one of the items is equal to $X$, then stop and report that you have found $X$. If you reach the end of the list without finding $X$, report that $X$ is not in the list.
7. [20 points] Execute heapsort with input file ASQWFGKZ. Use the array below. Add additional rows if needed.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | S | Q | W | F | G | K | Z |
| A | S | Q | Z | F | G | K | W |
| A | Z | Q | S | F | G | K | W |
| A | Z | Q | W | F | G | K | S |
| Z | A | Q | W | F | G | K | S |
| Z | W | Q | A | F | G | K | S |
| Z | W | Q | S | F | G | K | A |
| A | W | Q | S | F | G | K | $\mathbf{Z}$ |
| W | A | Q | S | F | G | K | $\mathbf{Z}$ |
| W | S | Q | A | F | G | K | $\mathbf{Z}$ |
| K | S | Q | A | F | G | $\mathbf{W}$ | $\mathbf{Z}$ |
| S | K | Q | A | F | G | $\mathbf{W}$ | $\mathbf{Z}$ |
| G | K | G | A | F | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| Q | K | G | H | F | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| F | K | G | A | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| K | F | G | A | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| A | F | G | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| G | F | A | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| A | F | $\mathbf{G}$ | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| F | A | $\mathbf{G}$ | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| A | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |
| $\mathbf{A}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{K}$ | $\mathbf{Q}$ | $\mathbf{S}$ | $\mathbf{W}$ | $\mathbf{Z}$ |

8. [20 points] The following code correctly computes the $n^{\text {th }}$ Fibonacci number. However, it is not a good idea to use this code. Why not? How would you solve the same problem differently?
```
\int fibonacci(int n)
    {
        assert(n > 0)
        if(n <= 2) return 1;
        else return fibonacci(n-2) + fibonacci(n-1);
    }
```

It will take exponential time. Use dynamic programming or memoization instead.
9. [20 points] Find the strong components of the directed graph shown below, using the DFS method in our textbook.


