1. Fill in the blanks. For the first three of these questions, give the exact formula.

(a) A binary tree of height \(h \) has at most ______________________ nodes.

(b) A graph (not ordered graph) with \(n \) nodes has at most ______________________ edges.

(c) A planar graph with 2 nodes has at most 1 edge, while a planar graph with 3 nodes has at most 3 edges. If \(n \geq 3 \), a planar graph with \(n \) nodes has at most ______________________ edges.

For these questions, assume the graph has \(n \) vertices and \(m \) edges.

(d) The asymptotic complexity of the Floyd Warshall algorithm is ______________________.

(e) The asymptotic complexity of the Bellman Ford algorithm is ______________________.

(f) The asymptotic complexity of Dijkstra’s algorithm is ______________________.

(g) The asymptotic complexity of Johnson’s algorithm is ______________________.

For these questions, the number of items is \(n \). Give the worst case complexity for each.

(h) The asymptotic complexity of bubblesort is ____________.

(i) The asymptotic complexity of selection sort is ____________.

(j) The asymptotic complexity of tree sort is ____________.

(k) The asymptotic complexity of merge sort is ____________.

(l) The asymptotic complexity of quicksort is ____________.

(m) The asymptotic complexity of polyphase merge sort is ____________.

(n) The asymptotic complexity of the BFPRT algorithm is ____________

2. Give the asymptotic complexity, in terms of \(n \), of each of the following code fragments.

(a) int kount = 0;
 for(int i = 2; i < n; i = i*i)
 kount++;
 cout << kount;

(b) int kount = 0;
 for(int i = 1; i < n; i++)
 for(int j = 1; j < i; j = 2*j)
 kount++;
 cout << kount;
3. What properties are desirable for a hash function h for a hash table used as a search structure?

4. The following code could be used as a subroutine for both quicksort and select. Assume $A[n]$ is an array of integers. For simplicity, we assume that no two entries of A are equal. Write a loop invariant for the while loop.

```c
int pivot = A[0];
int lo = 0;
int hi = n-1;
while(lo < hi)
{
    if(A[lo+1] < pivot) lo++;
    else if(A[hi] > pivot) hi--;
    else swap(A[lo+1],A[hi]);
}
```
5. The main memory of your computer is probably a 1-dimensional array. That is, each variable of your program is stored in a location RAM[i] for some \(0 \leq i < N \), where \(N \) is the size of your memory.

Suppose you declare an array

```c
int A[20][100][40];
```

Assume indices start at zero as in C++.

(a) If the compiler decides to store A in 80,000 consecutive locations, starting at RAM[4000], in row-major order, where would \(A[13][45][22] \) be stored?

(b) On the other hand, suppose the compiler decides to store A in column-major order starting at RAM[4000]. In that case, where would \(A[13][46][22] \) be stored?
6. Explain how to use a search structure to implement a sparse array.

7. Draw figures illustrating insertion (enqueue) into a queue implemented as singly linked circular list with dummy node.

Start with a figure illustrating the structure when the items, from front to rear, are B, M, Q, R.

Next, show the steps needed to insert H.