University of Nevada, Las Vegas Computer Science 477/677 Spring 2023

Answers to Assignment 1: Due Wednesday January 25, 2023

1. Problem 0.1 on page 8 of the textbook. Write either O, Ω or Θ in each blank. Do not write O or Ω if Θ is correct.
(a) $n-100=\Theta(n-200)$
(b) $n^{1 / 2}=O\left(n^{2 / 3}\right)$
(c) $100 n+\log n=\Theta\left(n+\log ^{2} n\right)$
(d) $n \log n=\Omega(10 n+\log (10 n))$
(e) $\log (2 n)=\Theta(\log (3 n))$
(f) $10 \log n=\Theta\left(\log \left(n^{2}\right)\right)$
(g) $n^{1.01}=\Omega\left(n \log ^{2} n\right)$
(h) $n^{2} / \log n=\Omega\left(n \log ^{2} n\right)$
(i) $n^{0.1}=\Omega\left(\log ^{2} n\right)$
(j) $(\log n)^{\log n}=\Omega(n / \log n)$
(k) $\sqrt{n}=\Omega\left(\log ^{3} n\right)$
(l) $n^{1 / 2}=O\left(5^{\log _{2} n}\right)$
(m) $n 2^{n}=O\left(3^{n}\right)$
(n) $2^{n}=\Theta\left(2^{n+1}\right)$
(o) $n!=\Omega\left(2^{n}\right)$
(p) $\log _{2} n^{\log _{2} n}=O\left(2^{\left(\log _{2} n\right)^{2}}\right)$
(q) $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$
2. The following problem is a modified version of problem $0.3(\mathrm{c})$ on page 9 of the textbook. The answer is not exactly the same as the answer to the textbook version, but the techniques are similar.
$F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. We start by assuming $F_{n}=n^{C}$ for some constant C. This is false, but it's true in the limit; that is, for larger and larger values of n, the ratio of F_{n} to
C^{n} converges to 1 . That is, there is a constant C such that $\lim _{n \rightarrow \infty} \frac{F_{n}}{n^{C}}=1$. for the correct value of C. Making the assumption that they are actually equal:

$$
\begin{aligned}
F_{n+2} & =F_{n+1}+F_{n} \\
C^{n+2} & =C^{n+1}+C^{n}
\end{aligned}
$$

Divide both sides by C^{n} :

$$
C^{2}=C^{1}+C^{0}
$$

Which is a quadratic equation over C. The quadratic formula gives us two solutions: $C=\frac{1 \pm \sqrt{ } 5}{2}$ But C is not the negative solution, since $\left\{F_{n}\right\}$ would converge to zero. thus $C=\frac{1+\sqrt{ } 5}{2}$ which is the so-called golden ratio. Since we did make an incorrect assumption, we might worry about this answer. But it's correct.
3. Consider the following $\mathrm{C}++$ program.

```
void process(int n)
    {
    cout << n << endl;
    if(n > 1) process(n/2);
    cout << n%2;
}
int main()
    {
    int n;
    cout << "Enter a positive integer: ";
    cin >> n;
    assert(n > 0);
    process(n);
    cout << endl;
    return 1;
}
```

The last line of the output of process(n) is a string of bits. What does this bitstring represent? The binary numeral for n.
4. The C++ code below implements a function, "mystery." What does it compute?

```
float squre(float x)
    {
    return x*x;
    }
float mystery(float x, int k)
    {
    if (k == 0) return 1.0;
    else if(x == 0.0) return 0.0;
    else if (k < 0) return 1/mystery(x,-k);
    else if (k%2) return x*mystery(x,k-1);
    else return mystery(squre(x),k/2);
}
```

It computes x^{k}.
5. Write the asymptotic time complexity for each code fragment, using Θ notation.
(a) for (int $i=1 ; i<n$; i++) for (int $j=i ; j>0 ; j--)$
$\Theta\left(n^{2}\right)$
(b) for (int $i=1 ; i<n$; $i=2 * i$) for (int $j=i ; j<n ; j++$)
$\Theta(n \log n)$
(c) for (int $i=1 ; i<n ; i=2 * i)$ for (int $j=1 ; ~ j<i ; j++$)
$\Theta(n)$
(d) for (int i=1; i < n; i++) for (int $j=1 ; ~ j<i ; ~ j=j * 2)$
$\Theta(n \log n)$
(e) for (int i=1; i < n; i++) for (int $j=i ; j<n ; j=j * 2$)
$\Theta(n)$
(f) for (int i=2; i < n; i = i*i)
$\Theta(\log \log n)$
(g) for (int i=1; i*i < n; i++)
$\Theta(\sqrt{ } n)$
(h) for (int $i=n ; i>1$; $i=i / 2$) for (int $j=1 ; ~ j<i ; j=2 * j$)
$\Theta\left(\log ^{2} n\right)$

