University of Nevada, Las Vegas Computer Science 477/677 Spring 2023 Answers Assignment 5: Due Saturday April 1, 2023

Name:
You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduage assistant, Sepideh Farivar, telling you how to turn in the assignment.

1. Write pseudocode for the Floyd-Warshall algorithm. for a weighted directed graph of n vertices. Assume that the vertices are numbered $1 \ldots n$, and that $W[i, j]$ is the weight of the edge, if any, from i to j. If there is no such edge, the value of $W[i, j]$ is given to be ∞. Your output should be two arrays, V and B (for back). The value of $V[i, j]$ is the length of the shortest path from i to j, and the value of $B[i, j]$ is the next-to-the-last vertex in the shortest path from i to j. For any vertex $i, B[i, i]$ is undefined.
```
for all \(i\) and all \(j\)
    \(V[i, j]=W[i, j]\) and \(B[i, j]=i\)
for all \(j\)
    for all \(i\)
        for all \(k\)
            if \((V[i, j]+V[j, k]<V[i, k])\)
\(\quad V[i, k]=V[i, j]+V[j, k]\) and \(B[i, k]=B[j, k]\)
```

2. Write pseudocode for the Bellman-Ford algorithm. Your code should include the shortcut that ends computation if it is certain that all shortest paths have been found.
Let the source vertex be 0 and the other vertices $1,2, \ldots$ n. Let $W[i, j]$ be the length of the edge from i to j, which could be infinity. We compute $V[i]$, the least cost of any path from 0 to i, as well as $B[i]$, the back pointer, for each positive i. Let m be the number of arcs. Let $(x[j], y[j])$ be the $j^{\text {th }}$ arc, and let $W[j]$ be the weight of that arc.
for all ifrom 1 to n

$$
V[i]=\infty
$$

$$
V[0]=0
$$

$$
\text { changed }=\text { true }
$$

while(changed)

$$
\{
$$

$$
\text { changed }=\text { false }
$$

$$
\text { for all } j \text { from } 1 \text { to } m
$$

$$
\text { if }(V[x[j]]+W[j]<V[y[j]])
$$

$$
\{
$$

$$
V[y[j]]=V[x[j]+W[j]
$$

$$
B[y[j]]=x[j]
$$

$$
\text { changed }=\text { true }
$$

 \}
 \}
 If no least cost path has more than d edges, the code will run in $O(m d)$ time if the graph has no negative cycle. However, it will run forever if the graph has a negative cycle. The code can be modified to detect negative cycles, but then it will execute in $\Theta(n m)$ time. I suspect that in practical cases, d is a lot smaller than n.
3. Walk through Kruskal's algorithm to find the minimum spanning tree of the weighted graph shown below. Indicate the steps of Union/Find.

6. Walk through the steps of heapsort for the array UBRYPQSVFMT. Show the array after each exchange.

1	2	3	4	5	6	7	8	9	10	11
U	B	R	Y	P	Q	S	V	F	M	T
U	B	R	Y	T	Q	S	V	F	M	P
U	B	S	Y	T	Q	R	V	F	M	P
U	Y	S	B	T	Q	R	V	F	M	P
U	Y	S	V	T	Q	R	B	F	M	
Y	U	S	V	T	Q	R	B	F	M	P
Y	V	S	U	T	Q	R	B	F	M	P
P	V	S	U	T	Q	R	B	F	M	Y
V	P	S	U	1	Q	R	B	F	M	Y
V	U	S	P	T	Q	R	B	F	M	Y
V	U	S	P	T	Q	R	B	F	M	Y
M	U	S	P	T	Q	R	B	F	V	
U	M	S	P	T	Q	R	B	F	V	
U	T	S	P	M	Q	R	B	F	V	Y
F	T	S	P	M	Q	R	B	U	V	Y
T	F	S	P	M	Q	R	B	U	V	Y
T	P	S	F	M	Q	R	B	U	V	Y
B	P	S	F	M	Q	R	T	U	V	
S	P	B	F	M	Q	R	T	U	\checkmark	
S	P	R	F	M	Q	B	T	U	V	
B	P	R	F	M	Q	S	T	U	V	
R	P	B	F	M	Q	S	T	U	V	Y
R	P	Q	F	M	B	S	T	U	V	Y
B	P	Q	F	M	R	S	T	U	V	Y
Q	P	B	F	M	R	S	T	U	V	Y
M	P	B	F	Q	R	S	T	U	V	
P	M	B	F	Q	R	S	T	U	V	
P	M	B	F	Q	R	S	T	U	V	
F	M	B	P	Q	R	S	T	U	V	Y
M	F	B	P	Q	R	S	T	U	V	
B	F	M	P	Q	R	S		U	V	

