Clues for Solving Recurrences and Asymptotic Complexity Problems

- 1. Solve each recurrence, using O, Ω , or Θ , whichever is appropriate. Throughout, we assume the base of the logarithm is 2.
 - (a) $F(n) = 4F(\frac{n}{2}) + 5n^2$

Use the master theorem.

(b) f(n) = f(n-1) + n.

Anti-derivative method.

(c) $f(n) = f(\frac{n}{2}) + f(\frac{n}{3}) + n$

Use the Akra Bazzi method (generalized master theorem) Note that $(1/2)^1 + (1/3)^1 = 1/2 + 1/3 = 5/6 < 1$

(d) $f(n) = f(\sqrt{n}) + 1$.

Substitute $m = \log n$, *i.e.*, $n = 2^m$. Then $\log \sqrt{n} = \frac{1}{2} \log n = m/2$. Let $f(n) = G(m) = G(\log n)$. Then $f(\sqrt{n}) = G(\log \sqrt{n}) = G(\frac{1}{2} \log n) = G(m/2)$. We have the recurrence G(m) = G(m/2) + 1By the master theorem $f(n) = G(m) = \Theta(\log m) = \Theta(\log \log n)$.

(e) $f(n) = 2f(\sqrt{n}) + \log n$

Substitute $m = \log n$, then use the master theorem.

(f) $H(n) = 2H(\frac{n}{2}) + O(n)$

Master theorem.

(g) g(n) = 2g(n-1) + 1

Let $n = \log m$, and F(m) = g(n). The answer will be exponential.

(h) $G(n) \ge G(n-1) + \lg n$

Anti-derivative

(i) $H(n) \le 2H(\sqrt{n}) + 4$.

Substitute $m = \log n$ which makes $n = 2^m$. Let G(m) = H(n). Then $G(m) = H(2^m)$, and $G(m/2) = H(2^{m/2}) = H((2^m)^{1/2}) = H(\sqrt{2^m}) = H(\sqrt{n})$. Finally, $G(m) \le 2G(m/2) + 4$. By the master theorem, $H(n) = G(m) = O(m) = O(\log n)$

(j) $K(n) = K(n - 2\sqrt{n} + 1) + n$.

Let $n = m^2$, *i.e.*, $m = \sqrt{n}$, and $G(m) = K(n) = K(m^2)$. Then $G(m-1) = G(\sqrt{n-1}) = K((\sqrt{n-1})^2) = K(n - 2\sqrt{n+1})$. We then have the recurrence $G(m) = G(m-1) + m^2$ Finish up by using the anti-derivative method.

(k) $F(n) \le F\left(\frac{n}{5}\right) + F\left(\frac{7n}{10}\right) + n$

This is from the BFPRT algorithm.

(1) $F(n) = 2F(\frac{2n}{3}) + F(\frac{n}{3}) + n$

The Akra Bazzi method. The exponent you need to find is an integer.

(m)
$$f(n) = 1 + f(\log n)$$

None of the methods we've discussed cover this one. But I expect you to know it.

2. Write the asymptotic time complexity for each code fragment, giving the answer in terms of n, using O, Ω , or Θ , whichever is appropriate.

For the first five, replace the inner loop by a statement that increments the counter by the appropriate amount.

- (a) for (int i=1; i < n; i++)
 for (int j=i; j > 0; j--)
 cout << "hello world" << endl;</pre>
- (b) for (int i=1; i < n; i++)
 for (int j=1; j < i; j++)
 cout << "hello world" << endl;</pre>
- (c) for (int i=1; i < n; i = 2*i)
 for (int j=1; j < i; j++)
 cout << "hello world" << endl;</pre>
- (d) for (int i=1; i < n; i++)
 for (int j=1; j < i; j = j*2)
 cout << "hello world" << endl;</pre>
- (e) for (int i=1; i < n; i++)
 for (int j=i; j < n; j = j*2)
 cout << "hello world" << endl;</pre>

You will need a substitution.

- (h) for (int i=n; i > 1; i = i/2)
 for (int j=1; j < i; j=2*j)
 cout << "hello world" << endl;</pre>

A little complicated, but don't get scared. Hint: substitute $k = \log i$ and $\ell = \log j$.

(i) For this problem, **george** is a function which returns an integer. You have no idea what that integer will be.

```
int m = n;
while(m > 0){
    int g = george(m);
    if (g > 0) m = m - g;
    else m = m - 1;
    cout << "hello world" << endl;
    }
```

It is common in practice to not know in advance what an input will be, even asymptotically.