Clues for Solving Recurrences and Asymptotic Complexity Problems

1. Solve each recurrence, using O, Ω, or Θ, whichever is appropriate. Throughout, we assume the base of the logarithm is 2 .
(a) $F(n)=4 F\left(\frac{n}{2}\right)+5 n^{2}$

Use the master theorem.
(b) $f(n)=f(n-1)+n$.

Anti-derivative method.
(c) $f(n)=f\left(\frac{n}{2}\right)+f\left(\frac{n}{3}\right)+n$

Use the Akra Bazzi method (generalized master theorem) Note that $(1 / 2)^{1}+(1 / 3)^{1}=$ $1 / 2+1 / 3=5 / 6<1$
(d) $f(n)=f(\sqrt{ } n)+1$.

Substitute $m=\log n$, i.e., $n=2^{m}$. Then $\log \sqrt{ } n=\frac{1}{2} \log n=m / 2$. Let $f(n)=G(m)=$ $G(\log n)$. Then $f(\sqrt{ } n)=G(\log \sqrt{ } n)=G\left(\frac{1}{2} \log n\right)=G(m / 2)$. We have the recurrence $G(m)=G(m / 2)+1$
By the master theorem
$f(n)=G(m)=\Theta(\log m)=\Theta(\log \log n)$.
(e) $f(n)=2 f(\sqrt{n})+\log n$

Substitute $m=\log n$, then use the master theorem.
(f) $H(n)=2 H\left(\frac{n}{2}\right)+O(n)$

Master theorem.
(g) $g(n)=2 g(n-1)+1$

Let $n=\log m$, and $F(m)=g(n)$. The answer will be exponential.
(h) $G(n) \geq G(n-1)+\lg n$

Anti-derivative
(i) $H(n) \leq 2 H(\sqrt{ } n)+4$.

Substitute $m=\log n$ which makes $n=2^{m}$. Let $G(m)=H(n)$. Then $G(m)=H\left(2^{m}\right)$, and $G(m / 2)=H\left(2^{m / 2}\right)=H\left(\left(2^{m}\right)^{1 / 2}\right)=H\left(\sqrt{ }\left(2^{m}\right)\right)=H(\sqrt{ } n)$. Finally, $G(m) \leq$ $2 G(m / 2)+4$. By the master theorem,
$H(n)=G(m)=O(m)=O(\log n)$
(j) $K(n)=K(n-2 \sqrt{n}+1)+n$.

Let $n=m^{2}$, i.e., $m=\sqrt{ } n$, and $G(m)=K(n)=K\left(m^{2}\right)$. Then $G(m-1)=G(\sqrt{ } n-1)=$ $K\left((\sqrt{ } n-1)^{2}\right)=K(n-2 \sqrt{ } n+1)$. We then have the recurrence
$G(m)=G(m-1)+m^{2}$
Finish up by using the anti-derivative method.
(k) $F(n) \leq F\left(\frac{n}{5}\right)+F\left(\frac{7 n}{10}\right)+n$

This is from the BFPRT algorithm.
(l) $F(n)=2 F\left(\frac{2 n}{3}\right)+F\left(\frac{n}{3}\right)+n$

The Akra Bazzi method. The exponent you need to find is an integer.
(m) $f(n)=1+f(\log n)$

None of the methods we've discussed cover this one. But I expect you to know it.
2. Write the asymptotic time complexity for each code fragment, giving the answer in terms of n, using O, Ω, or Θ, whichever is appropriate.
For the first five, replace the inner loop by a statement that increments the counter by the appropriate amount.
(a) for (int $\mathrm{i}=1$; $\mathrm{i}<\mathrm{n}$; i++)
for (int $j=i ; j>0 ; j--)$
cout << "hello world" << endl;
(b) for (int i=1; i < n; i++)
for (int $j=1$; $j<i ; j++$)
cout << "hello world" << endl;
(c) for (int i=1; i $<n$; i = 2 *i)
for (int $j=1$; $j<i ; j++$)
cout << "hello world" << endl;
(d) for (int i=1; i < n; i++)
for (int $j=1 ; ~ j<i ; j=j * 2$)
cout << "hello world" << endl;
(e) for (int $i=1 ; i<n ; i++$)
for (int $j=i ; j<n ; j=j * 2$)
cout << "hello world" << endl;
(f) for (int i=2; i $<n$; i $=i * i$) cout << "hello world" << endl;

You will need a substitution.
(g) for (int $i=1 ; i * i<n ; i++$) cout << "hello world" << endl;
(h) for (int $i=n ; i>1 ; i=i / 2$) for (int $j=1 ; j<i ; j=2 * j$) cout << "hello world" << endl;

A little complicated, but don't get scared. Hint: substitute $k=\log i$ and $\ell=\log j$.
(i) For this problem, george is a function which returns an integer. You have no idea what that integer will be.

```
int m = n;
while(m > 0){
    int g = george(m);
    if (g > 0) m = m - g;
    else m = m - 1;
    cout << "hello world" << endl;
    }
```

It is common in practice to not know in advance what an input will be, even asymptotically.

