University of Nevada, Las Vegas Computer Science 477/677 Spring 2023 Study Guide for Examination March 8, 2023

1. Review answers to homework3:
http://web.cs.unlv.edu/larmore/Courses/CSC477/S23/Assignments/hw3ans.pdf
2. Review answers to homework4:
http://web.cs.unlv.edu/larmore/Courses/CSC477/S23/Assignments/hw4ans.pdf
3. Use Huffman's algorithm to find an optimal prefix-free binary code for the following weighted alphabet.

A	2
B	3
C	7
D	4
E	8
F	15

4. Solve each recurrence using the anti-derivative method.
(i) $F(n)=F(n-2)+\frac{1}{n}$
(ii) $F(n)=F(n-\sqrt{ } n)+1$
(iii) $F(n)=F(n-\log n)+\log ^{2} n$
5. Solve each recurrence using the master theorem.
(iv) $F(n)=2 \sqrt{ } n+\log n$ (Use substitution.)
(v) $F(n)=3 F(n / 2)+1$
(vi) $F(n)=4 F(n / 2)+n^{2}$
6. Solve each recurrence using the generalized master theorem.
(vii) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n$
(viii) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n^{2}$
(ix) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n^{3}$
(x) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n^{4}$
7. Consider the following recursive program for a function F.
```
int F(int n)
    {
    if(n <= 3) return n;
    else return (F(n/2)+F((n+1)/2)F((n+2)/2+F((n+3)/2)+n*n)%8191;
}
```

(The purpose of $\% 8191$ is to prevent the integers from exceeding the capacity of a standard desktop computer.)

Suppose you wish to find the value of $F(n)$ for some fixed positive integer n. Give asymptotic answers to the following questions.
(a) What is the time complexity of your calculation if you use the recursive code given above?
(b) What is the time complexity of your calculation if you use dynamic programming?
(c) What is the time complexity of your calculation if you use memoization?
8. Solve the recurrence: $F(n)=F(\log n)+1$

