University of Nevada, Las Vegas Computer Science 477/677 Spring 2023 Study Guide for Examination March 8, 2023

1. Review answers to homework3:
http://web.cs.unlv.edu/larmore/Courses/CSC477/S23/Assignments/hw3ans.pdf
2. Review answers to homework4:
http://web.cs.unlv.edu/larmore/Courses/CSC477/S23/Assignments/hw4ans.pdf
3. Use Huffman's algorithm to find an optimal prefix-free binary code for the following weighted alphabet.

A	2	0000
B	3	0001
C	7	010
D	4	001
E	8	011
F	15	1

4. Solve each recurrence using the anti-derivative method.
(i) $F(n)=F(n-2)+\frac{1}{n}$
$F(n)=\Theta(\log n)$
(ii) $F(n)=F(n-\sqrt{ } n)+1$
$F(n)=\Theta(\sqrt{ } n)$
(iii) $F(n)=F(n-\log n)+\log ^{2} n$
$F(n)=\Theta(n \log n)$
5. Solve each recurrence using the master theorem.
(iv) $F(n)=2 F(\sqrt{ } n)+\log n$ (Use substitution.)
$F(n)=\Theta(\log n \log \log n)$
(v) $F(n)=3 F(n / 2)+1$
$F(n)=\Theta\left(n^{\log 3}\right)=\Theta\left(3^{\log n}\right)$
(vi) $F(n)=4 F(n / 2)+n^{2}$
$F(n)=\Theta\left(n^{2} \log n\right)$
6. Solve each recurrence using the generalized master theorem.
(vii) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n$
$F(n)=\Theta\left(n^{3}\right)$
(viii) $F(n)=3 F(n / 3)+3 F(2 n / 3)+n^{2}$
$F(n)=\Theta\left(n^{3}\right)$

$$
\text { (ix) } \begin{aligned}
F(n) & =3 F(n / 3)+3 F(2 n / 3)+n^{3} \\
F(n) & =\Theta\left(n^{3} \log n\right) \\
(\mathrm{x}) \quad F(n) & =3 F(n / 3)+3 F(2 n / 3)+n^{4} \\
F(n) & =\Theta\left(n^{4}\right)
\end{aligned}
$$

7. Consider the following recursive program for a function F.
```
int F(int n)
    {
        if(n <= 3) return n;
        else return (F(n/2)+F((n+1)/2)F((n+2)/2+F((n+3)/2)+n*n)%8191;
}
```

(The purpose of $\% 8191$ is to prevent the integers from exceeding the capacity of a standard desktop computer.)
Suppose you wish to find the value of $F(n)$ for some fixed positive integer n. Give asymptotic answers to the following questions.
(a) What is the time complexity of your calculation if you use the recursive code given above?

$$
T(n)=\Theta\left(n^{2}\right)
$$

(b) What is the time complexity of your calculation if you use dynamic programming?
$T(n)=\Theta(n)$
(c) What is the time complexity of your calculation if you use memoization?

$$
T(n)=\Theta(\log n)
$$

8. Solve the recurrence: $F(n)=F(\log n)+1$ $F(n)=\Theta\left(\log ^{*} n\right)$
