University of Nevada, Las Vegas Computer Science 477/677 Spring 2023 Answers for Examination April 12, 2023

- 1. Fill in the blanks. [25 points]
 - (a) The items in a priority queue represent unfulfilled obligations.
 - (b) Name three kinds of search structures.

Here are three that are commonly used. list, hash table binary search tree

2. [20 points] Write the prefix expression equivalent to the infix epression $-a * b - (-c - d) \wedge e$ (Don't forget that \wedge means exponentiation.)

 $-* \sim ab \wedge - \sim cde$

Some people wrote postfix instead. I gave partial credit. That answer is:

 $a \sim b * c \sim d - e \wedge -$

3. [20 points] Walk through the stack algorithm to change the infix expression $-a + b \wedge c \wedge -f$ to postfix. Show the stack at each step.

stack	infile	outfile
	$-a + b \wedge c \wedge -f$	
~	$a+b\wedge c\wedge -f$	
~	$+b \wedge c \wedge -f$	a
	$+b \wedge c \wedge -f$	$a \sim$
+	$b \wedge c \wedge -f$	$a \sim$
+	$\wedge c \wedge -f$	$a \sim b$
$+\wedge$	$c \wedge -f$	$a \sim b$
$+\wedge$	$\wedge -f$	$a \sim bc$
$+\wedge\wedge$	-f	$a \sim bc$
$+\wedge\wedge\sim$	f	$a \sim bc$
$+\wedge\wedge\sim$		$a \sim bcf$
$+ \land \land$		$a \sim bcf \sim$
$+\wedge$		$a \sim bcf \sim \wedge$
+		$a \sim bcf \sim \wedge \wedge$
		$a \sim bcf \sim \wedge \wedge +$

4. [20 points] Up to now, no one has written a polynomial time algorithm for the subset sum problem, given below. However, there is a pseudopolynomial time algorithm. Write code or pseudocode for the pseudopolynomial time algorithm for deciding whether there is a subsequence of a given finite sequence of positive integers whose sum is a given integer.

Let $x[1] \dots x[n]$ be the sequence, and K the given desired total.

```
bool S[n+1][K+1]; //S[i][j] means there is a subsequence of x[1] \dots x[i] whose total is j
S[0][0] = true; // the empty set is a solution if K = 0
for all j from 1 to K
  S[0][j] = false;
for all i from 1 to n // begin main outer loop
  for all j from 0 to K // begin main inner loop
    {
      \mathrm{if}\left(S[i-1][j]\right)
        {
         S[i][j] = true;
         if(x[i] + j \le K)
           [i][x[i] + j] = true;
        }
    }
if (S[n][K]) write "There is a solution.";
else write "There is no solution.";
```

The code below will write the solution, if S[n][K] is true. Execute writesolution(n, K).

```
void writesolution(int i, int j)

// input condition: S[i][j]

{

if (i > 1)

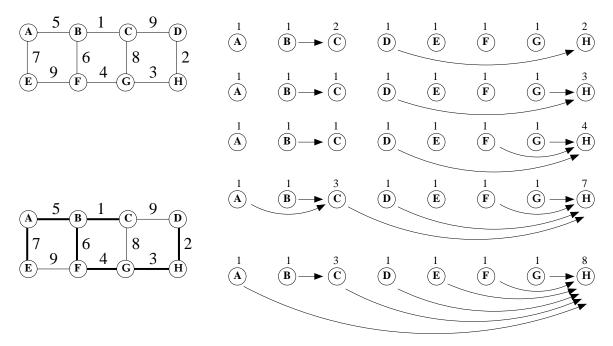
{

if (S[i - 1][j])

writesolution(i - 1, j);

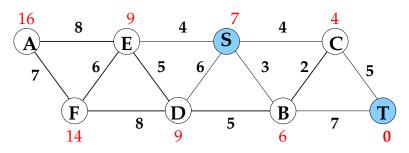
else

{

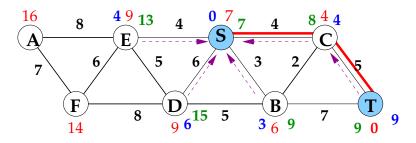

writesolution(i - 1, j - x[i]);

write x[i]; // x[i] is part of the subsequence

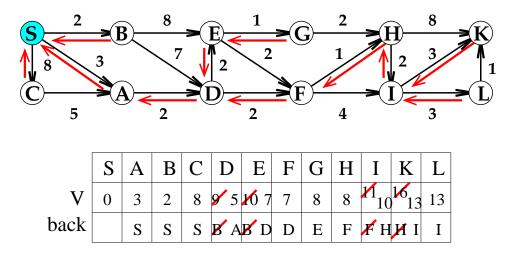
}

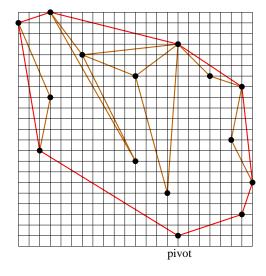

}
```

5. [20 points] Walk through Kruskal's algorithm, using union/find, for the following weighted graph. Be sure to watch for path compression.

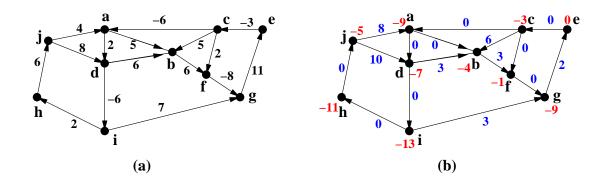


6. [20 points] Work the A^* algorithm for the following graph.


The heuristic function h is in red.


The function f is in blue, and the function g is in green.

7. [20 points] Walk through Dijkstra's algorithm for the following graph.



8. [20 points] Walk through Graham Scan to find the convex hull of the points in the plane given in this figure.

9. [20 points] Figure (a) below shows an instance of the all-pairs minpath problem. Work the first part of Johnson's algorithm on that graph, showing the adjusted weights in Figure (b).

Do not complete the computation of Johnson's algorithm.

1	2	3	4	5	6	7
В	G	Н	Κ	R	Е	Т
В	G	Т	Κ	R	Е	Η
В	R	Т	Κ	G	Е	Η
Т	R	В	Κ	G	Е	Η
Т	R	Η	Κ	G	Е	В
В	R	Η	Κ	G	Е	Т
R	В	Η	Κ	G	Е	Т
R	Κ	Η	В	G	Е	Т
Е	Κ	Η	В	G	R	Т
Κ	Е	Η	В	G	R	Т
Κ	G	Η	В	Е	R	Т
Е	G	Η	В	Κ	R	Т
Η	G	Е	В	Κ	R	Т
В	G	Е	Н	Κ	R	Т
G	В	Е	Н	Κ	R	Т
Е	В	G	Н	Κ	R	Т
В	Е	G	Н	Κ	R	Т

10. [20 points] Walk through heapsort for the list BGHKRET.