
LARGE Asymptotic Notation

Asymptotic notation is notation that describes the approximate limiting be-

havior of functions, and includes “big O” and “little o” notation, Ω notation,

and Θ notation,

The complexity of a computation is a measure of the resources used to make

the computation. There is time complexity, a measure of the time used, and

space complexity, a measure of how much memory is needed.

Since machines operate at different speeds, a measure of computation time

in seconds, minutes, or hours, is dependent on the machine, and is thus not

a useful measure of the time complexity of the algorithm used. Asymptotic

notation is used to abstract from the technology of the machine. For ex-

ample, Euclid’s algorithm for finding the greatest common divisor of two

integers, worked on a modern computer, takes less time than on an older

computer, or by hand. But the true efficiency of the algorithm has not

changed for 2300 years.

Complexity of Functions. For now, we consider only functions of non-

negative integers to non-negative integers. If we write
√
13, for example, we

mean an integer close to the real square root of 13, and if we write 13/2,

we mean 6. When we write log2 n, we mean an integer which is close to the

real value.

O Notation. If we write f(n) = O(g(n)), where f and g are functions,

we mean that eventually f(n) does not exceed some constant multiple of

g(n). More formally, there exist positive constants C and N such that

f(n) ≤ C g(n) for all n > N .

The Right Side is as Simple as Possible. Typically, when we write

f(n) = O(g(n)) (or Θ or Ω) the expression we use for g is simple, while the

expression for f may be complicated. For example we write 3n2−5n+11 =

O(n2), but we would never write n2 = O(3n2−5n+11), even though it’s true.

1



The right side is always written as simply as possible, and thus would never

be O(2n) or O(n+ 3), because O(n) is the same thing; and we would never

write O(log2 n), because the asymptotic class O(log n) does not depend on

the choice of base.

We can ignore the values of g(n) for the first few values of n, if necessary.

For example, we can write O(log log n) even though the function log log n is

undefined for n < 2.

Examples.

• 5n + 17 = O(n). Proof: Pick C = 6 and N = 17. Then 5n + 17 ≤ 6n

for all n ≥ 17.

• f(n) = n2. Then f(n) 6= O(n). Proof: Assume f(n) = O(n). Then

there exist constants C,N such that n2 ≤ Cn for all n ≥ N . Let

n = max {N,C + 1}. Then n ≥ N , but f(n) = n2 ≥ (C + 1)n > C n,

contradiction.

Alternative Definition of O. f(n) = O(g(n)) if and only if there are

constants C and K such that f(n) ≤ C g(n) +K for all n.

Using Limits. If lim
n→∞

f(n)

g(n)
< ∞ then f(n) = O(g(n))

Ω Notation. The inverse of O-notation. f(n) = Ω(g(n)) means g(n) =

O(f(n)). An alternative definition is that f(n) = Ω(g(n)) if and only if there

is some positive real number C and integer N such that f(n) ≥ C g(n) for

all n ≥ N .

Limits. If lim
n→∞

f(n)

g(n)
> 0 then f(n) = Ω(g(n)). The limit could be ∞.

Θ Notation. f(n) = Θ(g(n)) means that both f(n) = O(g(n)) and f(n) =

Ω(g(n)).

Logarithms. Let’s review some facts about logarithms that you learned in

high school. For this section, we do not insist that everything is an integer,

2



instead we use real numbers. For real numbers x and b such that x > 0 and

b > 1, we define logb x to be an exponent, the unique real number such that

blogb x = x.

1. logb x > 0 if x > 1.

2. logb x < 0 if 0 < x < 1.

3. logb 1 = 0

4. logb x is undefined if x ≤ 0.

5. If x < y, then logb x < logb y.

6. logb(xy) = logb x+ logb y.

7. logb

(

x

y

)

= logb x− logb y.

8. For any number n, positive, negative, or zero, logb (x
n) = n logb x

9. For any c > 1, logc x =
logb x

logb c

Asymtotic Analysis of Code. We allow one time unit for each step. In

the examples below, we assume that it takes one step to assign a value to a

variable, one step to perform any arithmetic operation, one step to compare

two values, and one step to write a line of output. Thus, in the first example,

each iteration takes finitely many steps, hence Ω(1) time altogether.

In each example below, we assume that n is an integer whose value is given

outside the code shown.

1. for(int i = 0; i < n; i++)

cout << "i = " << i << endl;

The time complexity of this code is Θ(n)

2. for(int i = 1; i < n; i=i*2)

cout << "i = " << i << endl;

3



The time complexity of this code is Θ(log n)

Proof: Assume n > 1. Let t be the number of iterations of the loop.

During the last iteration of the loop, i = 2t−1 < n Since the loop does

not iterate again, we know that i ∗ 2 = 2t ≥ n. Thus 2t−1 < n ≤ 2t.

Taking the base 2 logarithm for each of those three terms, we have

t− 1 < log2 n ≤ t. It follows that t = Θ(log n). Since there are finitely

many steps during each iteration, the time complexity of the code is

Θ(log n).

3. for(int i = n; i > 1; i=i/2)

cout << "i = " << i << endl;

The time complexity is also Θ(log n). Do you see why?

4. for(int i = 1; i < n; i++)

for(int j = 1; j < i; j = j*2)

cout << "i = " << i << " j = " << j << endl;

The time complexity is Θ(n log n).

Proof: The inner loop iterates Θ(log i) times during iteration i of the

outer loop. The number of iterations of the inner loop can be approxi-

mated by the definite integral
∫

n

x=1
ln x dx. Using integration by parts,

we get n lnn− n+ 1 = Θ(n log n).

5. for(int i = 2; i < n; i=i*i)

cout << "i = " << i << endl;

The time complexity is Θ(log log n).

Proof: By substitution. Let j = log
2
i and let m = log

2
n. Taking the

base 2 logarithm of both sides of the assignment i = i ∗ i, we obtain the

assignment j = j ∗ 2. Finally, since log
2
2 = 1, the code is equivalent to

for(int j = 1; i < m; j=j*2)

cout << "i = " << i << endl;

4



By the result given in problem 2, the time complexity is Θ(logm) =

Θ(log log n)

5


