Dynamic Programming

Introduction

Dynamic programming is an algorithm paradigm in which an instance of the problem consists of subinstances
(Usually called subproblems) The subproblems form a directed acyclic graph, which must be solved in topo-
logical order. Each subproblem reads the input of the instance together with the outputs of its predecessor
subproblems, and computes its own output, which can be read by its successor subproblems. The last sub-

problem worked computes the overall output of the instance.

There are many problems which can be reduced to dynamic program, and classic algorithms which are dynamic

programming algorithms when suitable formulated.

Weighted Acyclic Directed Graphs

The simplest kind of dynamic programming is finding the minimum (or maximum) weight path from a given
start vertex s of a weighted acyclic directed graph, say G, to a given other vertex, say t, for the single pair
version, or to all other vertices of G, for the single source version. Negative arc weights are allowed. Since
finding a maximum is same as finding a minimum after all weights are negated, those two goals are equivalent.

For discussion purposes, we assume we are seeking minimum weight (shortest) paths.

Topologial Order

Suppose that there are n vertices of G. which we write in topological order: v[0], v[1], ... v[n—1], where v[0]
is the source vertex. source vertex. Let S[i] be the smallest total weight of any path (that means, directed
path) from v[0] to v[i]. We assume that, for each i > 0, there at least one path from v[0] to v[i]. Let W[i,j] be
the weight of the arc from v[i] to v[j] if such an arc exists, and let Pred[j] be the set of i < j such that there is

an arc from v[i] to v[j|. The following dynamic program solves all subproblems.

s[ol =0
for all j from 1 to n-1
S[j] = "infinity"
for all i in Pred[j]
temp = S[il+W[i,j]
if (temp < S[j1)
S[j]1 $=% temp
back[j] $=% i

Coin Row Problems

For a coin row problem, we are given a row of n coins, each of which has some value. Our goal is to select a

maximum weight legal subset of the coins, where the definition of legality is different for each version.



For each problem, let the coins be numbered 1...7n, and let V[i] be the value of the i*" coin. For simplicity,

we assume that V[i] > 0 for each i.

The Simple Version

Define a subset to be legal if it contains no two consecutive coins of the row. We give two dynamic programs.

Best subsequence up to some point

In our first program, the subproblems are to compute A[é], the maximum weight of any legal subsequence of
the first ¢ coins. This subsequence need not end at ¢. For convenience we introduce dummy values to make

our code more uniform; We compute Afi] for —1 < ¢ < n. as follows.

Program 1:

A[-11 = 0; // dummy value

A[0] = 0; // dummy value
for(int 1 = 1; i <= n; i++)

A[i] = max(A[i-1],A[i-2]+V[i]);

return A[n];

I leave it up to you to modify the code so as to compute backpointers: back[i] must be equal to either i—1 or
i—2 for each i.

The problem reduces to finding a maximum weight path in a weighted directed graph. We use an explicit

example sequence of the {V[z]} 5,1,3,6,2,7, 1, 4, 8. The maximum total legal subsequence is 5, 6, 7, 8.
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Best subsequence ending at some point

Our second algorithm solves the same problem, but we compute subproblems BJi], defined to be the maximum

weight of any legal subsequence ending at the it" coin.

Program 2:

B[-2]
B[-1] = 0; // dummy value
B[0] = 0; // dummy value

for(int i = 1; i <= n; i++)

0; // dummy value



B[i] = V[i] + max(B[i-2],B[i-3]);
return max(B[n],B[n-1]1);
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Another Version

We now consider a more complicated coin row problem. A subset is legal if any two coins in the set must have
at least two coins between them in the original row. Again, we use the sequence: 5, 1, 3, 6,2, 7, 1, 4, 8. As

before, we have two dynamic programs.

Best subsequence up to some point

Let A[i] be the maximum weight of any legal subsequence of the first i coins.

Program 3

A[-2] = 0; // dummy value
A[-1] = 0; // dummy value
A[0] = 0; // dummy value
for(int i = 1; i <= n; i++)

A[i] = max(A[i-1],A[i-3]+V[i]);
return A[n];
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Best subsequence ending at some point

Let BJ[i] be the maximum weight of any legal subsequence which ends at the i*® coin.

Program 4

B[-4] = 0; // dummy value
B[-3] = 0; // dummy value
B[-2] = 0; // dummy value

B[-1] = 0; // dummy value

B[0] = 0; // dummy value

for(int 1 = 1; i <= n; i++)

B[i] = V[i] + max(B[i-3],B[i-4],B[i-5]);
return max(B[n],B[n-1],B[n-2]);

The maximum total legal subsequence is 5, 7, 8.
Do you understand these programs?

The graph for Program 4 is more complex than the others. Can you draw it?

A Harder Version

The coin row problem gets harder as we pick more and more complex definitions of legality. For a harder

version, we define a subset to be legal if it does not have any three consecutive coins of the original row.

Writing the dynamic program for this version of the coin row problem is considerably harder than for the

previous two. Can you do it?

Bellman Ford Algorithm

We are given a weighted directed graph G with n vertices and m arcs. Negative weights are allowed, but as
always, no negative cycle may exist. The source vertex is v,, and we need to find the minimum weight path

from v, to v, for each 1.

Bellman Ford is a dynamic programming algorithm, but it is may not be obvious what the subproblems are.
Note that G can have cycles, but the graph of subproblems cannot.

There are approximately n? subproblems. For any 0 < k < n and any 0 < d < n, the subproblem S[d, k] is
defined to be the minimum weight of any path from v, to v, consisting of at most d hops (arcs). The directed
acyclic graph of subproblems contains an arc from S[d, k] to S[d + 1,¢] for any k and ¢ provided there is an
arc of G from v, to v,. The source vertex of the graph of subproblems is S[0, 0].



Floyd Warshall Algorithm

We are given a weighted graph G of n vertices. There are approximately n® subproblems, namely S|i, j, k] for
all 4,7,k from 1 to n. The value of that subproblem is the minimum weight of any path from v, to v, whose
interior does not contain any vertex of index greater than j. Note, however, that either ¢ or k, or both, could
be larger than j. The subproblem S[i, j, k] has two predecessors in the subproblem graph, namely S[i, j — 1, j]
and S[j,7 — 1,k]. Do you see why that graph is acyclic?



