
Solutions to Recurrences

Introduction

A recurrence is a definition of values of a function in terms of previous values of the function. To be

complete, a definition of a function using a recurrence must have a non-recursive branch. However, if the

object is to express the value of the function asymptotically, the non-recursive branch may not be necessary,

as in the examples we give here.

In most of our examples, the solution is expressed in Θ notation, but sometimes we need to write O or Ω.

Anti-Derivative Method

The derivative f ′ of a real-valued function f is defined as fillows: f ′(x) = lim
h→0

f(x)− f(x− h)

h

In asymptotic analysis, we only need h to be “close” to zero, but still positive. How close? A general rule

is that h must be asymptotically smaller than x.

1. F (n) = F (n− 1) + n We can write
F (n)− F (n− 1)

1
= n

1 is close to zero, so we have F ′(n) = Θ(n), from which we obtain hence F (n) = Θ(n2).

2. F (n) = F (n−
√
n) + n We can write

F (n)− F (n−
√
n)

√
n

=
n
√
n
=

√
n .

√
n is close enough to zero that the left-hand-side is asymptotically the derivative of F .

We have F ′(n) = Θ(
√
n) . Taking the anti-derivative, we obtain F (n) = Θ(n3/2)

The Master Theorem

Given the recurrence F (n) = AF (n/B) + nC where A, B, C are constants, A > 0, B > 1, and C ≥ 0 :

F (n) =











Θ(nC if BC > A

Θ(nC log n) if BC = A

Θ
(

nlogB A
)

if BC < A

Equivalently: F (n) =











Θ(nC if C > logB A

Θ(nC log n) if C = logB A

Θ
(

nlogB A
)

if C < logB A

Recall that logB A =
logA

logB
.

3. F (n) = F (n/2) + 1

A = 1, B = 2, and C = 0, and BC = A. Thus F (n) = Θ(nC log n) = Θ(n0 log n) = Θ(log n).

4. F (n) = 2F (n/2) + n

This is one of the most commonly occuring recurrences. A = 2, B = 2, and C = 1. Thus BC = A.

We obtain F (n) = Θ(n log n).

5. F (n) = 2F (n/2) + 1

A = 2, B = 2, and C = 0. BC < A. log2 2 = 1, and n1 = n. Thus F (n) = Θ(n).

1

6. F (n) = 2F (n/2) + n2

A = 2, B = 2, and C = 2. BC > A. Thus F (n) = Θ(nC) = Θ(n2).

The Generalized Master Theorem (Akra-Brazzi)

We change the notation to Greek letters, changing A to α, 1/B to β, and C to γ, for example. The

recurrence F (n) = AF (n/B) + nC is now written F (n) = αF (βn) + nγ .

In the generalized master theorem, we allow multiple terms on the right hand side, each with its own αi

and βi. The general form of the recurrence is

F (n) = α1F (β1n) + α2F (β2n) + · · ·+ αkF (βkn) + nγ

To solve the recurrence, we first compute Γ =
∑k

i=1 αiβ
γ
i If Γ = 1, then F (n) = Θ(nγ log n). If Γ < 1,

then F (n) = Θ(nγ). The hard case is Γ > 1. We need to find a constant δ such that
∑k

i=1 αiβ
δ
i = 1. Then

F (n) = Θ(nδ).

7. The recurrence

F (n) ≤ 2F (n/5) + F (n/2) + n

gives the aymptotic time complexity of the BFPRT algorithm, also known as the “median of medians”

algorithm for selecting the kth smallest item in an array.

k = 2, α1 = 2, β1 =
1
5
, α2 = 1, β2 =

1
2
, and γ = 1.

Γ = 2 1
5
+ 1

2
= 9

10
< 1. Thus F (n) = O(nγ) = O(n). However, for other reasons, the complexity is

actually Θ(n).

8. F (n) = F (n/3) + F (n/6) + F (n/2) + n

k = 3, α1 = 1, β1 =
1
3
, α2 = 1, β2 =

1
6
, α3 = 1, β3 =

1
2
, γ = 1.

Γ = 1
3
+ 1

6
+ 1

2
= 1. Thus F (n) = Θ(nγ log n) = Θ(n log n).

9. F (n) = F (3n/5) + F (4n/5) + n2

k = 2, α1 = 1, β1 =
3
5
, α2 = 1, β2 =

4
5
, γ = 2.

Γ =
(

3
5

)

2

+
(

4
5

)

2

= 1. Thus F (n) = Θ(nγ log n) = Θ(n2 log n).

10. F (n) = 2F (2n/3) + F (n/3) + n

k = 2, α1 = 2, β1 =
2
3
, α2 = 1, β2 =

1
3
. γ = 1.

Γ = 2
(

2
3

)

+ 1
3
= 5

3
> 1. Therefore, we must find δ such that 2

(

2
3

)δ
+

(

1
3

)δ
= 1. The correct value is

δ = 2. Thus F (n) = Θ(n2).

2

Substitution

We can sometimes use substitution to transform a recurrence into one which we can solve using one of the

above methods.

11. F (n) = F (
√
n) + 1

Define a new function G by letting G(m) = F (2m) for any m. Now, let m = log2 n, hence G(m) =

F (n) and F (n) = G(log2 n), which implies that F (
√
n) = G(log2(

√
n)) = G(1

2
log2 n = G(m/2).

Substituting in the original recurrence, we obtain G(m) = G(m/2) + 1. From Example 3 above, we

have G(m) = Θ(logm), hence F (n) = G(m) = Θ(logm) = Θ(log log n).

12. F (n) = 2F (
√
n) + log n

We use the same substitution as in the previous problem, namely m = log2 n and G(m) = F (n) We

obtain G(m) = 2G(m/2) +m. By Example 4, we have G(m) = Θ(m logm) = Θ(log n log log n).

13. F (n) = 2F (n− 1) + 1

You can problably immediately guess that the solution is exponential. We can obtain the solution

by substitution: We define G(m) = F (log2 m). Let m = 2n equivalently, n = log2 m. Thus F (n) =

G(2n) = G(m) and F (n−1) = G(2n−1) = G(2n/2) = G(m/2). Substituting in the original recurrence

we have: G(m) = 2G(m/2) + 1 From Example 5 we have G(m) = Θ(m). Thus F (n) = G(m) =

Θ(m) = Θ(2n).

More Generalizations of the Master Theorem

There are other, even more sophisticated, generalizations of the master theorem. You can find these on

the internet, for example, in Wikipedia.

Other

14. F (n) = F (log n) + 1

The function log∗x, the so-called iterated logarithm, is defined recursively, as follows:

log∗x =

{

0 if x ≤ 1

1 + log∗(log x) otherwise

The solution to our recurrence is then F (n) = Θ(log∗n). Think of log∗x this way. Enter x onto your

calculator. If x ≤ 1, then log∗x is zero. Otherwise, push the log button on your calculator until

you see a number which is less than or equal to 1. The number of times you pushed that button is

log∗x. (Remember that log means base 2 logarithm.)

What is log∗ of the number of people living on your street? What is log∗ of the national debt, in

dollars? What is log∗ of the number of atoms in the visible universe?

I have given you a few easy-to-understand methods, which are sufficient to solve many practical recurrences.

But there are recurrences whose solution requires more advanced methods, and some which have no closed

form solution.

3

