
CS 477/677 Answers to Study Guide for Examination March 6, 2024

1. Fill in the blanks.

(a) Any comparison-based sorting algorithm on a file of size n must execute Ω(n log n) comparisons in

the worst case. Use Ω.

(b) Name two well-known divide-and-conquer sorting algorithms.

mergesort

quicksort

2. Fill in each blank. Write Θ if that is correct; otherwise write O or Ω, whichever is correct. Recall that

log means log
2
.

(a) log n2 = O(log n3)

(b) log(n!) = Θ(n log n)

(c)
∑n−1

i=0 ik = Ω(nk)

(d) nn = Ω(2log
2 n).

(e) log n = Θ(lnn)

3. Fill in each blank with one of the words, stack, heap, queue, or array.

(a) “pop” and “push” are operators of stack.

(b) “fetch” and “store” are operators of array.

4. Find the asymptotic time complexity of each of these code fragments in terms of n, using Θ notation.

(a) for(int i = 0; i*i < n; i++)

Θ(log log n)

(b) for(int i = 0; i < n; i++)

for(int j = 1; j < i; j = 2*j);

Θ(n log n)

(c) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j);

Θ(n)

(d) for(float x = n; x > 2.0; x = sqrt(x)) (sqrt(x) returns the square root of x.)

Θ(log log n)



(e) for(int i = 1; i < n; i = 2*i)

for(int j = 2; j < i; j = j*j);

(Hint: use substitution)

Θ(log n log log n)

5. Show a circular queue with dummy node items B, M, Q, R, in that order, from front to rear. then show

how the queue changes when you insert H.

q

RQMBH

q

B M Q R

The initial queue.

Dummy points to front node. Rear node points to dummy.

All nodes are private; q is the only publically visible part of the queue.

q

B M Q RH

temp

New local variable temp points to a new node.

H, the new datum is written into the dummy node.

to the pointer of the new node.
The pointer of the (old) dummy node is copied

Static pointer q points to the dummy node.

The new node becomes the dummy node, and the old dummy is the rear node.

The value of temp is copied to the pointer q

temp is deallocated. Static q is still the only public part of the structure..

q

RQMBH

Now execute dequeue, which deletes and returns B.

6. A stack of integers could be implemented in C++ as a linked list as follows.

struct stack

{

int item;

stack*link;

};

Finish writing the code for the operators push, pop, and empty, below.

2



void push(stack*&s,int newitem)

{

stack*temp = new stack;

temp->item = newitem;

temp->link = s;

s = temp;

}

int pop(stack*&s)

{

int rslt = s->item;

s = s->link;

return rslt;

}

bool empty(stack*s)

{

return s == NULL;

}

7. Let F1, F2, . . . be the Fibonacci numbers. Find a constant K such that Fn = Θ(Kn). Show the steps.

Assume Fn = Kn, although that’s not exactly true. Then Kn = Kn−1 +Kn−2 for each n. Divide by

Kn−2 and we get the quadratic equation K2 = K + 1. By the quadratic formula K =
−1±

√
−1 + 4

2
.

But since the Fibonacci numbers are all positive, K > 0. Thus there is only one solution: K =
−1 +

√
3

2

8. (a) What is the purpose of the function power given below?

To compute xn.

(b) Find a loop invariant of the while loop.

z ∗ ym = xn

float power(float x, int n) // input condition: n >= 0

{

int m = n;

float y = x;

float z = 1.0;

while(m > 0)

{

if(m%2) z = z*y;

m = m/2;

y = y*y;

}

return z;

}

3



9. The following code could be used in a C++ program implementing quicksort. What is the loop invariant

of the loop?

void quicksort(int first,int last) // sorts the subarray A[first .. last]

{

if(first < last) // if first >= last, we are done

{

int mid = (first+last)/2;

int pivot = A[mid];

swap(A[mid],A[first]); // move pivot to first position

int lo = first;

int hi = last;

while(lo < hi)

{

if(A[lo+1] > pivot and A[hi] < pivot)

{

swap(A[lo+1],A[hi]);

lo++;

hi--;

}

if(A[lo+1] <= pivot and lo < hi) lo++;

if(A[hi] >= pivot and lo < hi) hi--;

}

assert(lo == hi);

swap(A[first],A[lo]); // move pivot between subarrays

if(lo < mid) // sort the smaller subarray first

{

quicksort(first,lo-1);

quicksort(lo+1,last);

}

else

{

quicksort(lo+1,last);

quicksort(first,lo-1);

}

}

}

lo \le hi and A[first] = pivot and A[i] <= pivot for all first <= i <= lo

and A[i] >= pivot for all hi < i <= last

4



10. The following portion of C++ code contains an array implementation of queue. Fill in the missing code

for the operators “enqueue” and “empty.”

struct queue

{

int A[N]; // N is a constant large enough to prevent overflow

int rear = 0;

int front = 0; // initially the queue is empty

};

void enqueue(queue&q,int newitem) // inserts newitem into q

{

q.rear++;

q.A[q.rear] = newitem;

}

bool empty(queue q) // returns true if q is empty, false otherwise

{

return q.rear == q.front;

}

int dequeue(queue&q) // returns an item from q and deletes that item

{

int rslt = q.A[q.front];

q.front++;

return rslt;

}

11. Fill in the blanks.

(a) Name three search structures.

binary search tree

hash table

unordered list

(b) Name three priority queues.

stack

queue

heap

(c) Name a divide-and-conquer search algorithm, which only works on a sorted list.

binary search

(d) Name an O(n)-time search algorithm, generally used only when n is small.

linear search

12. Solve the recurrences, expressing answers using Θ.

(a) F (n) = 2F (n/2) + n

F (n) = Θ(n log n)

5



(b) F (n) = F (
√
n) + 1

F (n) = Θ(log log n)

13. Find the asymptotic time complexity of each of these code fragments in terms of n, using Θ notation.

(a) for(int i = 0; i < n; i++)

for(int j = 1; j < i; j = 2*j);

Θ(n log n)

(b) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j);

Θ(n)

(c) for(float x = n; x > 2.0; x = sqrt(x)) (sqrt(x) returns the square root of x.)

Θ(log log n)

(d) for(int i = 1; i < n; i = 2*i)

for(int j = 2; j < i; j = j*j);

(Hint: use substitution)

Substitute k = log i, m = log n, and ℓ = log j. The code becomes

for(int k = 0; k < m; k++)

for(int l = 1; l < k; l = 2*l);

The solution is Θ(m logm) = Θ(log n log log n)

(e) for(int i= 0; i < n; i++)

for(int j = 0; j*j < n; j++)

The two loops are independent. The outer loop takes Θ(n) time, the inner Θ(
√
n) time. Simply

multiply the complexities, and we obtain Θ(n
√
n) = Θ(n3/2).

(f) for(float i = n; i >= 1.0; i = log(i))

We use the notorious log∗ function. The answer is Θ(log∗ n).

(g) for(int i = n; i > 1; i = i/2);

for(int j = 1; j < i; j = 2*j);

Substituting k = log i, m = log n, ℓ = log j. we get

for(k = m; k > 9; k −−)

for(ℓ = 0; ℓ < k; ℓ++);

The complexity is Θ(m2) = Θ(log2 n).

6



14. Find an optimal prefix-free binary code for the following weighted alphabet. Show the Huffman tree.

f

e

d

b

a

c

6

4

2

5

20

1

000

010

001

0110

0111

1

d e f

6 4 2 5 120

3

11 7

18

380

1
0 1

0

1

0

1

0
1

a b c

15. Fill in the blanks.

(a) The items in a priority queue represent unfulfilled obligations

(b) Name three kinds of search structures. binary search tree hash table unordered list

16. Write the prefix expression equivalent to the infix epression −a ∗ b− (−c− d) ∧ e

−∗ ∼ ab ∧ − ∼ cde

17. Walk through the stack algorithm to change the infix expression −a + b ∧ c ∧ −f to postfix. Show the

stack at each step.

stack input output remarks

−a+ b ∧ c ∧ −f

∼ a+ b ∧ c ∧ −f Read, Push operator ∼
∼ +b ∧ c ∧ −f a Read and write variable.

+b ∧ c ∧ −f a ∼ Pop and write ∼ since + has lower priority

+ b ∧ c ∧ −f a ∼ Read and push operator.

+ ∧c ∧ −f a ∼ b Read and write variable.

+∧ c ∧ −f a ∼ b Read and push operator onto lower priority operator.

+∧ ∧ − f a ∼ bc Read and write variable.

+ ∧ ∧ −f a ∼ bc Remember: ∧ is right associative.

+ ∧ ∧ ∼ f a ∼ bc ∼ has highest priority.

+ ∧ ∧ ∼ a ∼ bcf Read and write variable

+ ∧ ∧ a ∼ bcf ∼ Pop and write

+∧ a ∼ bcf ∼ ∧ Pop and write

+ a ∼ bcf ∼ ∧∧ Pop and write

a ∼ bcf ∼ ∧ ∧+ Pop and write

Done.

7


