1. Fill in the blanks.

(a) Any comparison-based sorting algorithm on a file of size n must execute $\Omega(n \log n)$ comparisons in the worst case. Use Ω.

(b) Name two well-known divide-and-conquer sorting algorithms.

mergesort

quicksort

2. Fill in each blank. Write Θ if that is correct; otherwise write O or Ω, whichever is correct. Recall that \log means \log_2.

(a) $\log n^2 = O(\log n^3)$

(b) $\log(n!) = \Theta(n \log n)$

(c) $\sum_{i=0}^{n-1} i^k = \Omega(n^k)$

(d) $n^n = \Omega(2^{\log^2 n})$.

(e) $\log n = \Theta(\ln n)$

3. Fill in each blank with one of the words, stack, heap, queue, or array.

(a) “pop” and “push” are operators of stack.

(b) “fetch” and “store” are operators of array.

4. Find the asymptotic time complexity of each of these code fragments in terms of n, using Θ notation.

(a) for(int i = 0; i*i < n; i++)

$\Theta(\log \log n)$

(b) for(int i = 0; i < n; i++)

for(int j = 1; j < i; j = 2*j);

$\Theta(n \log n)$

(c) for(int i = 1; i < n; i++)

for(int j = i; j < n; j = 2*j);

$\Theta(n)$

(d) for(float x = n; x > 2.0; x = sqrt(x)) (sqrt(x) returns the square root of x.)

$\Theta(\log \log n)$
(e) for(int i = 1; i < n; i = 2*i)
 for(int j = 2; j < i; j = j*j);
 (Hint: use substitution)
 \(\Theta(n \log n \log \log n) \)

5. Show a circular queue with dummy node items B, M, Q, R, in that order, from front to rear. then show how the queue changes when you insert H.

\[\begin{array}{cccc}
\text{B} & \text{M} & \text{Q} & \text{R} \\
\text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\end{array} \]

The initial queue. Static pointer q points to the dummy node. Rear node points to dummy. All nodes are private; q is the only publically visible part of the queue.

\[\begin{array}{cccc}
\text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{temp} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\end{array} \]

New local variable temp points to a new node.
H, the new datum is written into the dummy node.

\[\begin{array}{cccc}
\text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\end{array} \]

The pointer of the (old) dummy node is copied to the pointer of the new node.
The value of temp is copied to the pointer q
The new node becomes the dummy node, and the old dummy is the rear node.
temp is deallocated. Static q is still the only public part of the structure.

\[\begin{array}{cccc}
\text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\text{q} & \text{H} & \text{B} & \text{M} & \text{Q} & \text{R} \\
\end{array} \]

Now execute dequeue, which deletes and returns B.

6. A stack of integers could be implemented in C++ as a linked list as follows.

```
struct stack
{
    int item;
    stack* link;
};
```

Finish writing the code for the operators push, pop, and empty, below.
void push(stack*& s, int newitem)
{
 stack* temp = new stack;
 temp->item = newitem;
 temp->link = s;
 s = temp;
}

int pop(stack*& s)
{
 int rslt = s->item;
 s = s->link;
 return rslt;
}

bool empty(stack*s)
{
 return s == NULL;
}

7. Let F_1, F_2, \ldots be the Fibonacci numbers. Find a constant K such that $F_n = \Theta(K^n)$. Show the steps.
Assume $F_n = K^n$, although that’s not exactly true. Then $K^n = K^{n-1} + K^{n-2}$ for each n. Divide by K^{n-2} and we get the quadratic equation $K^2 = K + 1$. By the quadratic formula $K = \frac{-1 \pm \sqrt{-1 + 4}}{2}$.
But since the Fibonacci numbers are all positive, $K > 0$. Thus there is only one solution: $K = \frac{-1 + \sqrt{3}}{2}$

8. (a) What is the purpose of the function power given below?
To compute x^n.
(b) Find a loop invariant of the while loop.
\[z \times y^m = x^n \]

float power(float x, int n) // input condition: n >= 0
{
 int m = n;
 float y = x;
 float z = 1.0;
 while(m > 0)
 {
 if(m%2) z = z*y;
 m = m/2;
 y = y*y;
 }
 return z;
}
9. The following code could be used in a C++ program implementing quicksort. What is the loop invariant of the loop?

```cpp
void quicksort(int first, int last) // sorts the subarray A[first .. last]
{
    if(first < last) // if first >= last, we are done
    {
        int mid = (first+last)/2;
        int pivot = A[mid];
        swap(A[mid],A[first]); // move pivot to first position
        int lo = first;
        int hi = last;
        while(lo < hi)
        {
            {
                swap(A[lo+1],A[hi]);
                lo++;
                hi--;
            }
            if(A[lo+1] <= pivot and lo < hi) lo++;
            if(A[hi] >= pivot and lo < hi) hi--;
        }
        assert(lo == hi);
        swap(A[first],A[lo]); // move pivot between subarrays
        if(lo < mid) // sort the smaller subarray first
        {
            quicksort(first,lo-1);
            quicksort(lo+1,last);
        }
        else
        {
            quicksort(lo+1,last);
            quicksort(first,lo-1);
        }
    }
}
```

lo \le hi and A[first] = pivot and A[i] \le pivot for all first \le i \le lo
and A[i] \ge pivot for all hi < i \le last
10. The following portion of C++ code contains an array implementation of queue. Fill in the missing code for the operators “enqueue” and “empty.”

```cpp
struct queue {
    int A[N]; // N is a constant large enough to prevent overflow
    int rear = 0;
    int front = 0; // initially the queue is empty
};
void enqueue(queue&q,int newitem) // inserts newitem into q
{
    q.rear++;
    q.A[q.rear] = newitem;
}
bool empty(queue q) // returns true if q is empty, false otherwise
{
    return q.rear == q.front;
}
int dequeue(queue&q) // returns an item from q and deletes that item
{
    int rslt = q.A[q.front];
    q.front++;
    return rslt;
}
```

11. Fill in the blanks.

(a) Name three search structures.
 - binary search tree
 - hash table
 - unordered list

(b) Name three priority queues.
 - stack
 - queue
 - heap

(c) Name a divide-and-conquer search algorithm, which only works on a sorted list.
 - binary search

(d) Name an $O(n)$-time search algorithm, generally used only when n is small.
 - linear search

12. Solve the recurrences, expressing answers using Θ.

(a) $F(n) = 2F(n/2) + n$
 $F(n) = \Theta(n \log n)$
(b) \(F(n) = F(\sqrt{n}) + 1 \)
\[F(n) = \Theta(\log \log n) \]

13. Find the asymptotic time complexity of each of these code fragments in terms of \(n \), using \(\Theta \) notation.

(a) for(int i = 0; i < n; i++)
 for(int j = 1; j < i; j = 2*j);
 \(\Theta(n \log n) \)

(b) for(int i = 1; i < n; i++)
 for(int j = i; j < n; j = 2*j);
 \(\Theta(n) \)

(c) for(float x = n; x > 2.0; x = sqrt(x)) (sqrt(x) returns the square root of x.)
 \(\Theta(\log \log n) \)

(d) for(int i = 1; i < n; i = 2*i)
 for(int j = 2; j < i; j = j*j);
 (Hint: use substitution)
 Substitute \(k = \log i, m = \log n, \) and \(\ell = \log j. \) The code becomes
 for(int k = 0; k < m; k++)
 for(int l = 1; l < k; l = 2*l);
 The solution is \(\Theta(m \log m) = \Theta(n \log \log n) \)

(e) for(int i = 0; i < n; i++)
 for(int j = 0; j*j < n; j++)
 The two loops are independent. The outer loop takes \(\Theta(n) \) time, the inner \(\Theta(\sqrt{n}) \) time. Simply multiply the complexities, and we obtain \(\Theta(n \sqrt{n}) = \Theta(n^{3/2}). \)

(f) for(float i = n; i >= 1.0; i = log(i))
 We use the notorious \(\log^* \) function. The answer is \(\Theta(\log^* n). \)

(g) for(int i = n; i > 1; i = i/2);
 for(int j = 1; j < i; j = 2*j);
 Substituting \(k = \log i, m = \log n, \ell = \log j. \) we get
 for(\(k = m; k > 9; k --)\)
 for(\(\ell = 0; \ell < k; \ell += \));
 The complexity is \(\Theta(m^2) = \Theta(\log^2 n). \)
14. Find an optimal prefix-free binary code for the following weighted alphabet. Show the Huffman tree.

<table>
<thead>
<tr>
<th>a</th>
<th>6</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>4</td>
<td>010</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>0110</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td>001</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td>0111</td>
</tr>
</tbody>
</table>

15. Fill in the blanks.

(a) The items in a priority queue represent **unfulfilled obligations**

(b) Name three kinds of search structures. **binary search tree** **hash table** **unordered list**

16. Write the prefix expression equivalent to the infix expression \(-a \ast b - (-c - d) \land e\)

\(-* \sim ab \land - \sim cde\)

17. Walk through the stack algorithm to change the infix expression \(-a + b \land c \land - f\) to postfix. Show the stack at each step.

<table>
<thead>
<tr>
<th>stack</th>
<th>input</th>
<th>output</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>(-a + b \land c \land - f)</td>
<td></td>
<td>Read, Push operator ~</td>
</tr>
<tr>
<td>~</td>
<td>(a + b \land c \land - f)</td>
<td></td>
<td>Read and write variable.</td>
</tr>
<tr>
<td>~</td>
<td>(+b \land c \land - f) (a)</td>
<td></td>
<td>Pop and write ~ since + has lower priority</td>
</tr>
<tr>
<td>+</td>
<td>(b \land c \land - f) (a \sim)</td>
<td></td>
<td>Read and push operator.</td>
</tr>
<tr>
<td>+</td>
<td>(\land c \land - f) (a \sim b)</td>
<td></td>
<td>Read and write variable.</td>
</tr>
<tr>
<td>+\land</td>
<td>(c \land - f) (a \sim b)</td>
<td></td>
<td>Read and push operator onto lower priority operator.</td>
</tr>
<tr>
<td>+\land</td>
<td>(\land - f) (a \sim bc)</td>
<td></td>
<td>Read and write variable.</td>
</tr>
<tr>
<td>+\land</td>
<td>(-f) (a \sim bc)</td>
<td></td>
<td>Remember: (\land) is right associative.</td>
</tr>
<tr>
<td>+\land</td>
<td>(\sim) (a \sim bc)</td>
<td></td>
<td>~ has highest priority.</td>
</tr>
<tr>
<td>+\land</td>
<td>(a \sim bc)</td>
<td></td>
<td>Read and write variable</td>
</tr>
<tr>
<td>+\land</td>
<td>(a \sim bc)</td>
<td></td>
<td>Pop and write</td>
</tr>
<tr>
<td>+\land</td>
<td>(a \sim bc)</td>
<td></td>
<td>Pop and write</td>
</tr>
<tr>
<td>+\land</td>
<td>(a \sim bc)</td>
<td></td>
<td>Pop and write</td>
</tr>
<tr>
<td>+\land</td>
<td>(a \sim bc)</td>
<td></td>
<td>Done.</td>
</tr>
</tbody>
</table>