1. True or False.
 (a) [5 points] F If there are 100 data items and 1000 possible hash values, a collision is so unlikely that you can, in practice, assume that it won’t happen.
 (b) [5 points] F Open hashing uses open addressing.
 (c) [5 points] F You can avoid collisions in a hash table by making the table twice as large as the data set.
 (d) [5 points] T False overflow for a queue can be avoided by implementing the queue as a circular list.
 (e) [5 points] F Kruskal’s algorithm uses dynamic programming.
 (f) [5 points] F There will be no collisions if the size of a hash table is at least ten times the number of data items.
 (g) [5 points] T A hash function should appear to be random, but cannot actually be random.

2. Fill in the blanks.
 (a) [5 points] In closed hashing, collisions are resolved by the use of probe sequences.
 (b) [10 points] (3) Which of the following three statements is closest to the truth?
 (1) In SHA256 hashing, collisions are impossible.
 (2) In SHA256 hashing, collisions occur no more than once a year in practice.
 (3) In SHA256 hashing, collisions are so unlikely that industry experts claim they never occur.
 (c) [5 points] The worst case time complexity of quicksort on a list of length n.

 $O(n^2)$
 (d) [5 points] The average case time complexity of quicksort on a list of length n, if pivots are chosen at random.

 $\Theta(n \log n)$
 (e) [5 points] A directed graph is defined to be strongly connected if, given any two vertices x and y, the graph contains a path from x to y.
 (f) [10 points] In an open hash table of size m holding n data items, the items at each index of the table are typically shown as linked list. However, that structure is only efficient if m/n is fairly small. In general, we should use a search structure at each table index.

Pick one of these answers:
heap
stack
search structure
(g) [5 points] **Huffman's** algorithm finds a binary code so that the code for one symbol is never a prefix of the code for another symbol.

(h) [5 points] An acyclic directed graph with 9 vertices must have at least 9 strong components. (Must be exact answer.)

(i) [5 points] In **open hashing** or **separate chaining** there can be any number of items at a given index of the hash table. $O(n)$.

(j) [5 points] The asymptotic complexity of the Floyd/Warshall algorithm is $\Theta(n^3)$.

(k) [5 points] The asymptotic complexity of Dijkstra's algorithm is $O(m \log n)$.

3. For each of these recursive subprograms, write a recurrence for the time complexity, then solve that recurrence.

(a) [10 points]

```cpp
void george(int n)
{
    if(n > 0)
    {
        for(int i = 0; i < n; i++) cout << "hello" << endl;
        george(n/2); george(n/3);
    }
}
```

$T(n) = T(n/2) + T(n/3) + n$

$T(n) = \Theta(n)$

(b) [10 points]

```cpp
void martha(int n)
{
    if(n > 0)
    {
        martha(2n/3);
        martha(n/3);
        for(int i = 1; i < n; i++)
            cout << "hello world";
    }
}
```

$T(n) = T(2n/3) + T(n/3) + n$

$T(n) = \Theta(n \log n)$
4. [20 points] The figure below shows a treap, where the data are letters and the nodes of the tree are memos, where the first component is the key, a letter, and the second component is a the priority, a random integer. Insertion of the letter G, where the priority is chosen (at random) to be 17. Show the steps.

```
[84x695]4. [20 points] The figure below shows a treap, where the data are letters and the nodes of the tree are memos, where the first component is the key, a letter, and the second component is a the priority, a random integer. Insertion of the letter G, where the priority is chosen (at random) to be 17. Show the steps.

```

5. [10 points] Write the prefix expression equivalent to the infix expression $-a \ast b - (-c - d) \land e $

(Don’t forget that \land means exponentiation.)

$-\ast \sim ab \land - \sim cde$

Some people wrote postfix instead. I gave partial credit. That answer is:

$a \sim b \ast c - d - e \land -$

6. Solve each recurrence, expressing each answer in terms of O, Ω, or Θ, whichever is most appropriate.

(a) [10 points] $G(n) = 2G(n/4) + \sqrt{n}$

$G(n) = \Theta(\sqrt{n} \log n)$

(b) [10 points] $H(n) = \log n + 1$

$H(n) = \Theta(\log^* n)$

(c) [10 points] $G(n) = 4(G(n/2) + 5n^2$

$F(n) = \Theta(n^2 \log n)$

$4(1/2)^2 = 1$, therefore $G(n) = \Theta(n \log n)$.

(d) [10 points] $F(n) = F(n - \log n) + \log^2 n$

$\frac{F(n) - F(n - \log n)}{\log n} = \frac{\log^2 n}{\log n}$

$F'(n) = \Theta(\log n)$

$F(n) = \Theta(n \log n)$
7. [20 points] Walk through Dijkstra’s algorithm for the following graph.

![Dijkstra's Algorithm Diagram]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>*</td>
<td>e</td>
<td>c</td>
<td>d</td>
<td>s</td>
<td>f</td>
<td>s</td>
<td>f</td>
</tr>
</tbody>
</table>

8. [20 points] Explain how to implement a sparse array using a search structure. Let A be a sparse array.

- **Fetch**: Search for A[i]: Find a pair (i,x) and return x. If no such pair exists, return a default value.
- **Store**: To store A[i] = x: Find a pair (i,y) and replace y by x. If no such pair is found, insert the pair (i,x) into the search structure.

9. [20 points] Walk through Kruskal’s algorithm to find the minimum spanning tree of the weighted graph shown below. Show the evolution of the union/find structure. Whenever there is choice between two edges of equal weight, choose the edge which has the alphabetically largest vertex. Whenever there is a union of two trees of equal weight, choose the alphabetically larger root to be the root of the combined tree. Indicate path compression when it occurs.

![Kruskal's Algorithm Diagram]
10. [20 points] The left-hand figure below shows an instance of the all-pairs minpath problem. Work the first part of Johnson’s algorithm on that graph, and show the adjusted weights in the right-hand figure. Do not complete the computation of Johnson’s algorithm.

All red numbers must be ≤ 0, and all green numbers must be ≥ 0.

11. [20 points] Write pseudocode for the Bellman Ford algorithm. Be sure to include the shortcut that stops execution when further computation is unnecessary.

For all i from 1 to n V[i] = infinity
V[0] = 0
bool finished = false
while not finished
{
 finished = true;
 For all j from 1 to m
 {
 temp = V[S[k]] + W[k]
 if(temp < V[T[k]])
 {
 V[T[k]] = temp
 back[T[k]] = S[k]
 finished = false
 }
 }
}

12. Solve each recurrence, giving asymptotic answers, using O, Ω, or Θ, whichever is most appropriate.

(a) [10 points] $F(n) \leq 4F(n/2) + n^2$

$F(n) = O(n^2 \log n)$

(b) [10 points] $G(n) \geq G(4n/5) + G(3n/5) + n^2$

$F(n) = \Theta(n^2 \log n)$
13. [20 points] Execute heapsort for the list DNHVELX. Show the array at each step, and identify the step at which the array is a heap for the first time.

- D N H V E L X
- D N X V E L H
- D V X N E L H
- X V D N E L H
- X V L N E D H
- H V L N E D X
- V H L N E D X
- V N L H E D X
- D N L H E V X
- N D L H E V X
- N H L D E V X
- E H L D N V X
- L H E D N V X
- D H E L N V X
- H D E L N V X
- E D H L N V X
- D E H L N V X

heapify finished

14. Give the asymptotic complexity, in terms of \(n \), for each of these code fragments.

(a) [10 points]
```cpp
for(int i = 2; i < n; i = i*i)
    cout < "Hello world!";
```

(b) [10 points]
```cpp
for(int i = 0; i < n; i++)
    for(int j = n; j > i; j = j/2)
        \( \Theta(n) \)
```

(c) [10 points]
```cpp
for(int i = 0; i < n; i++)
    for(int j = i; j > 0; j = j/2)
```
15. [10 points] If $A[5][7]$ is stored in column-major order, how many predecessors does $A[3][4]$ have?

$4 \times 5 + 3 = 23$

16. Consider the following recursive C++ function.

```cpp
int f(int n)
{
    if(n > 0) return f(n/2)+f(n/4)+f(n/4 + 1)+n;
    else return 0;
}
```

(a) [10 points] What is the asymptotic complexity of f as a function of n, using Θ notation?

The recurrence is $f(n) = f(n/2)+2f(n/4)+n$ By the generalized master theorem, $f(n) = \Theta(n \log n)$.

(b) [10 points] What is the asymptotic time complexity of this code as a function of n, using Θ notation?

The recurrence is $T(n) = T(n/2) + 2T(n/4) + 1$ By the generalized master theorem, $T(n) = \Theta(n)$.

(c) [10 points] The following dynamic program computes $f[i]$ for all i.

```cpp
f[0] = 0;
for(int i = 1; i <= n; i++)
    f[i] = f[i/2] + f[i/4 + 1] + i;
```

What is the asymptotic time complexity of that code as a function of n, using Θ notation?

```cpp
f[0] = 0;
for(int i = 1; i <= n; i++)
    f[i] = f[i/2] + f[i/4] + f[i/4 + 1] + i;
```

The value of $f(i)$ is computed for each i up to n. The answer is $\Theta(n)$. Ans $\Theta(n)$

Represent the subproblem $f[i]$ by the integer i. There is one subproblem for each integer from 0 to n. The subproblems are the vertices of a directed graph. There is an arc from i to j if the computation of $f[j]$ requires the value of $f[i]$. We need to find the number of predecessors of n in this directed graph. It helps to work out an example. Let $n = 1785$. We need to compute f for the following integers: 1785, 892, 446, 447, 223, 224, 111, 112, 55, 56, 27, 28, 29, 13, 14, 15, 6, 7, 8, 3, 4, 1, 2, 0.

Except for the smallest few, the predecessors are in blocks where each block starts with n divided by a power of 2 and has at most three members. Thus the number of predecessors is approximately $3 \log_2 n$. Thus the number of memos stored is $\Theta(\log n)$. The search time needed is $O(\log n \log \log n)$ if the time required for a search is asymptotically the logarithm of the size of the search structure. Thus the time complexity is $O(\log n \log \log n)$.

17. [20 points] Walk through the A^* algorithm for the weighted directed graph shown below, where the pair is (S, T). The heuristic is shown as red numerals.

Show the arrays and the contents of the heap at each step. h is the heuristic, f is the current distance from the source, g is the sum of h and f, while back is the backpointer.

Heap: S

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>18</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>g</td>
<td>12</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>back</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Heap: BDE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>18</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>g</td>
<td>12</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>back</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Heap: ADE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>18</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>g</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>back</td>
<td>B</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Heap: DE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>18</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>g</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>back</td>
<td>B</td>
<td>S</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>
T is fully processed, and we are done. The shortest path from S to T is (S,B,A,D,T) obtained by following the back pointers.