
University of Nevada, Las Vegas Computer Science 477/677 Spring 2024

Answers to Examination April 10, 2024

The entire examination is 420 points.

1. True or False.

(a) [5 points] F If there are 100 data items and 1000 possible hash values, a collision is so unlikely that

you can, in practice, assume that it won’t happen.

(b) [5 points] F Open hashing uses open addressing.

(c) [5 points] F You can avoid collisions in a hash table by making the table twice as large as the data

set.

(d) [5 points] T False overflow for a queue can be avoided by implementing the queue as a circular list.

(e) [5 points] F Kruskal’s algorithm uses dynamic programming.

(f) [5 points] F There will be no collisions if the size of a hash table is at least ten times the number

of data items.

(g) [5 points] T A hash function should appear to be random, but cannot actually be random.

2. Fill in the blanks.

(a) [5 points] In closed hashing, collisions are resolved by the use of probe sequences.

(b) [10 points] (3) Which of the following three statements is closest to the truth?

(1) In SHA256 hashing, collisions are impossible.

(2) In SHA256 hashing, collisions occur no more than once a year in practice.

(3) In SHA256 hashing, collisions are so unlikely that industry experts claim they never occur.

(c) [5 points] The worst case time complexity of quicksort on a list of length n.

O(n2)

(d) [5 points] The average case time complexity of quicksort on a list of length n, if pivots are chosen

at random.

Θ(n log n)

(e) [5 points] A directed graph is defined to be strongly connected if, given any two vertices x and

y, the graph contains a path from x to y.

(f) [10 points] In an open hash table of size m holding n data items, the items at each index of the

table are typically shown as linked list. However, that structure is only efficient if m/n is fairly

small. In general, we should use a search structure at each table index.

Pick one of these answers:

heap

stack

search structure



(g) [5 points] Huffman’s algorithm finds a binary code so that the code for one symbol is never a

prefix of the code for another symbol.

(h) [5 points] An acyclic directed graph with 9 vertices must have at least 9 strong components. (Must

be exact answer.)

(i) [5 points] In open hashing or separate chaining there can be any number of items at a given

index of the hash table. O(n).

(j) [5 points] The asymptotic complexity of the Floyd/Warshall algorithm is .

Θ(n3)

(k) [5 points] The asymptotic complexity of Dijkstra’s algorithm algorithm is O(m log n)

3. For each of these recursive subprograms, write a recurrence for the time complexity, then solve that

recurrence.

(a) [10 points]

void george(int n)

{

if(n > 0)

{

for(int i = 0; i < n; i++) cout << "hello" << endl;

george(n/2); george(n/3);

}

}

T (n) = T (n/2) + T (n/3) + n

T (n) = Θ(n)

(b) [10 points]

void martha(int n)

{

if(n > 0)

{

martha(2n/3);

martha(n/3);

for(int i = 1; i < n; i++)

cout << "hello world";

}

}

T (n) = T (2n/3) + T (n/3) + n

T (n) = Θ(n log n)

2



4. [20 points] The figure below shows a treap, where the data are letters and the nodes of the tree are

memos, where the first component is the key, a letter, and the second component is a the priority, a

random integer. Insertion of the letter G, where the priority is chosen (at random) to be 17. Show the

steps.

[L,20]

[R,14]

[S,7]

[T,3]

[A,12]

[E,1]

[K,5]

[G,17]

[L,20]

[R,14]

[S,7]

[T,3]

[A,12]

[K,5]

[G,17]

[E,1]

[G,17]

[E,1] [K,5]

[L,20]

[R,14]

[S,7]

[T,3]

[A,12]

[L,20]

[R,14]

[S,7]

[T,3]

[G,17]

[K,5][A,12]

[E,1]

5. [10 points] Write the prefix expression equivalent to the infix epression −a ∗ b− (−c− d) ∧ e

(Don’t forget that ∧ means exponentiation.)

−∗ ∼ ab ∧ − ∼ cde

Some people wrote postfix instead. I gave partial credit. That answer is:

a ∼ b ∗ c ∼ d− e ∧ −

6. Solve each recurrence, expressing each answer in terms of O, Ω, or Θ, whichever is most appropriate.

(a) [10 points] G(n) = 2G(n/4) +
√
n

G(n) = Θ(
√
n log n)

(b) [10 points] H(n) = log n+ 1

H(n) = Θ(log∗ n)

(c) [10 points] G(n) = 4(G(n/2) + 5n2

F (n) = Θ(n2 log n)

4(1/2)2 = 1, therefore G(n) = Θ(n log n).

(d) [10 points] F (n) = F (n− log n) + log2 n

F (n)− F (n− log n)

log n
= log2

n

logn

F ′(n) = Θ(log n)

F (n) = Θ(n log n)

3



7. [20 points] Walk through Dijkstra’s algorithm for the following graph.

2

7

1

2

4 1

2 as e

g

d

c

b

s a b c d
0 1

d
2
f

s sc

e

e*

7
s

6

f
10 3

g

f
8 3

7
4

1

2

1

f

8. [20 points] Explain how to implement a sparse array using a search structure. Let A be a sparse array.

The search stucture hold ordered pairs (i,x) where A[i] = x.

Fetch: Search for A[i]: Find a pair (i,x) and return x. If no such pair exists, return a default value.

Store: To store A[i] = x: Find a pair (i,y) and replace y by x. If no such pair is found, insert the pair

(i,x) into the search structure.

9. [20 points] Walk through Kruskal’s algorithm to find the minimum spanning tree of the weighted graph

shown below. Show the evolution of the union/find structure. Whenever there is choice between two

edges of equal weight, choose the edge which has the alphabetically largest vertex. Whenever there is a

union of two trees of equal weight, choose the alphabetically larger root to be the root of the combined

tree. Indicate path compression when it occurs.

A B C D FE

A B C D FE

A B C D FE

C A

D B E

F

1 1
2

3

4

56

8 7

9

C A

D B E

F

A B C D FE

1 1 11 2

path compression

1 1 1 132 4

2

AG
AC

1 1 1 132 17

11

1

1 1
2

3

4

56

8 7

9

1 1 1 132 1

EH

8

path

com
pression

FG
AB
BD

EF
CD

path compression
no union

path compression

G H

G

G H

H

H

G

H

G

G H

4



10. [20 points] The left-hand figure below shows an instance of the all-pairs minpath problem. Work the

first part of Johnson’s algorithm on that graph, and show the adjusted weights in the right-hand figure.

Do not complete the computation of Johnson’s algorithm.

−1 2 2−1

B D

G0

0−2

0

−2

A

−1
0 0 1

2

5−1

34

2
4

3
2

2

−1 F0

C0 −3E

0

S

−3 00

5 −1

0 0 0 0 0 0 0

−1

3

−2 4

2 22−1

−1−2

A G−1

B D F

EC

All red numbers must be ≤ 0, and all green numbers must be ≥ 0.

11. [20 points] Write pseudocode for the Bellman Ford algorithm. Be sure to include the shortcut that stops

execution when further computation is unnecessary.

For all i from 1 to n V[i] = infinity

V[0] = 0

bool finished = false

while not finished

{

finished = true;

For all j from 1 to m

{

temp = V[S[k]] + W[k]

if(temp < V[T[k]])

{

V[T[k]] = temp

back[T[k]] = S[k]

finished = false

}

}

12. Solve each recurrence, giving asymptotic answers, using O, Ω, or Θ, whichever is most appropriate.

(a) [10 points] F (n) ≤ 4F (n/2) + n2

F (n) = O(n2 log n)

(b) [10 points] G(n) ≥ G(4n/5) +G(3n/5) + n2

F (n) = Θ(n2 log n)

5



13. [20 points] Execute heapsort for the list DNHVELX. Show the array at each step, and identify the step

at which the array is a heap for the first time.

D N H V E L X

D N X V E L H

D V X N E L H

X V D N E L H

X V L N E D H

H V L N E D X

V H L N E D X

V N L H E D X

D N L H E V X

N D L H E V X

N H L D E V X

E H L D N V X

L H E D N V X

D H E L N V X

H D E L N V X

E D H L N V X

D E H L N V X

heapify finished

14. Give the asymptotic complexity, in terms of n, for each of these code fragments.

(a) [10 points]

for(int i = 2; i < n; i = i*i)

cout < "Hello world!";

(b) [10 points]

for(int i = 0; i < n; i++)

for(int j = n; j > i; j = j/2)

Θ(n)

(c) [10 points]

for(int i = 0; i < n; i++)

for(int j = i; j > 0; j = j/2)

6



Θ(n log n)

15. [10 points] If A[5][7] is stored in column-major order, how many predecessors does A[3][4] have?

4*5 + 3 = 23

16. Consider the following recursive C++ function.

int f(int n)

{

if(n > 0) return f(n/2)+f(n/4)+f(n/4 + 1)+n;

else return 0;

}

(a) [10 points] What is the asymptotic complexity of f as a function of n, using Θ notation?

The recurrence is f(n) = f(n/2)+2f(n/4)+n By the generalized master theorem, f(n) = Θ(n log n).

(b) [10 points] What is the asymptotic time complexity of this code as a function of n, using Θ notation?

The recurrence is T (n) = T (n/2) + 2T (n/4) + 1 By the generalized master theorem, T (n) = Θ(n).

Ans Θ(n)

(c) [10 points] The following dynamic program computes f [i] for all i.

f[0] = 0;

for(int i = 1; i <= n; i++)

f[i] = f[i/2] + f[i/4 + 1] + i;

What is the asymptotic time complexity of that code as a function of n, using Θ notation?

f[0] = 0;

for(int i = 1; i <= n; i++)

f[i] = f[i/2] + f[i/4] + f[i/4 + 1] + i;

cout << f[n] << endl;

The value of f(i) is computed for each i up to n. The answer is Θ(n). Ans Θ(n)

Represent the subproblem f[i] by the integer i. There is one subproblem for each integer from 0 to n.

The subproblems are the vertices of a directed graph. There is an arc from i to j if the computation

of f[j] requires the value of f[i]. We need to find the number of predecessors of n in this directed

graph. It helps to work out an example. Let n = 1785. We need to compute f for the following

integers: 1785, 892, 446, 447, 223, 224, 111, 112, 55, 56, 27, 28, 29, 13, 14, 15, 6, 7, 8, 3, 4, 1, 2, 0.

Except for the smallest few, the predecessors are in blocks where each block starts with n divided

by a power of 2 and has at most three members. Thus the number of predecessors is approximately

3 log2n. Thus the number of memos stored is Θ(log n. The search time needed is O(log n log log n)

if the time required for a search is asymptotically the logarithm of the size of the search structure.

Thus the time complexity is O(log n log log n).

7



17. [20 points] Walk through the A∗ algorithm for the weighted directed graph shown below, where the pair

is (S, T ). The heuristic is shown as red numerals.

.

S

AB

D
T

F C

2

5

44

10

7

9

312

917

18 78
4

14

0

E

Show the arrays and the contents of the heap at each step. h is the heuristic, f is the current distance

from the source, g is the sum of h and f , while back is the backpointer.

Heap: S

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0

g 12

back

Heap: BDE

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0 4 14 4

g 12 12 17 22

back S S S

Heap: ADE

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0 6 4 14 4

g 12 13 12 17 22

back B S S S

Heap: DE

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0 6 4 11 4

g 12 13 12 14 22

back B S A S

8



Heap: TE

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0 6 4 11 4 15

g 12 13 12 14 22 15

back B S A S D

Heap: E

S A B C D E F T

h 12 7 8 9 3 18 17 0

f 0 6 4 11 4 15

g 12 13 12 14 22 15

back B S A S D

T is fully processed, and we are done. The shortest path from S to T is (S,B,A,D,T) obtained by following

the back pointers.

9


