The Bellman–Ford Algorithm

UNLV: Analysis of Algorithms Lawrence L. Larmore

The Single Source Minimum Path Problem

We are given a weighted directed graph $G = (V, E, W)$ with a designated source vertex s. That is, if $e = (u, v) \in E$, then $W(e) = W(u, v)$ is the weight of the edge e. A solution to the problem consists of arrays $\{V[v]\}_{v \in V}$ and $\{\text{back}[v]\}_{v \in V}$, such that $V[v]$ is the minimum weight of any path from s to v, while $\text{back}[v]$ is the next-to-the-last vertex of one of those minimum paths. There is no solution if G has a negative cycle.

\[
\text{for all } v \text{ in } V \\
\quad \text{back}[v] := \ast \\
\quad V[v] := \text{infinity} \\
\text{endfor} \\
V[s] := 0 \\
\text{altered} := \text{true} \\
\text{while (altered)} \\
\quad \text{altered} := \text{false} \\
\quad \text{for all } e = (u,v) \text{ in } E \\
\quad \quad \text{if } (V[u] + W(e) < V[v]) \\
\quad \quad \quad V[v] := V[u] + W(e) \\
\quad \quad \quad \text{back}[v] := u \\
\quad \quad \quad \text{altered} := \text{true} \\
\quad \text{endif} \\
\text{endfor} \\
\text{ endwhile}
\]

The running time of the Bellman-Ford algorithm is $O(nm)$. If ℓ is the length of the longest minimum weight path found, the above code runs in only $O(\ell m)$ time. If G has a negative cycle, the above code will never halt.
The code below contains protection against this. If the while loop executes \(n \) times and some value of \(V \) is altered at the \(n^{th} \) iteration, there must be a negative cycle.

```plaintext
for all v in V
    back[v] := *
    V[v] := infinity
endfor
V[s] := 0
altered := true
numiterations := 0
while (altered and (numiterations < n))
    altered := false
    numiterations := numiterations + 1
    for all e = (u,v) in E
        if (V[u] + W(e) < V[v])
            V[v] := V[u] + W(e)
            back[v] := u
            altered := true
        endif
    endfor
endwhile
if (altered)
    Write('There is a negative cycle.')
endif
```