
Johnson’s Algorithm and the A* Algorithm

Lawrence L. Larmore UNLV

Equivalent Weightings of Directed Graphs

Suppose G = (V,E) is a directed graph. Let W1 and W2 be two edge weightings on E, neither
weighting allowing a negative cycle. If σ is any path in G, we let |σ|

i
be the sum of the edges of

σ, using the weight Wi. If x, y are nodes of G, we define di(x, y) to be the the smallest value of
|σ|

i
for any path σ from x to y.

We say that W1 and W2 are equivalent if there is some function h such that

W2(x, y) = W1(x, y)− h(x) + h(y)

for all (x, y) ∈ E. It follows that d2(x, y) = d1(x, y) − h(x) − h(y) for all (x, y) ∈ V × V . The
matrix back remains unchanged.

Johnson’s Algorithm

In Johnson’s algorithm, given a weighted directed graph (G,W1) with no negative cycles, we first
define G∗ to be the augmented graph consisting of all the nodes and edges of G, together with
one additional node s∗, together with an edge from s∗ to every node of G. We then extend the
weighting W1 to G∗ by defining W1(s

∗, x) = 0 for all x ∈ G.

We now apply the Bellman-Ford algorithm to solve the single source problem on G∗, where s∗ is
the source. Let f(x) be the length of the shortest path from s∗ to x in G∗. Note that f(x) ≤ 0
for all x. Use h(x) = −f(x) to define an equivalent weight function W2.

Claim: All values of W2 are non-negative.

Proof of Claim: Let (x, y) ∈ E. Then f(y) ≤ f(x) +W1(x, y), since f(y) is the shortest distance
from s∗ to y, i.e., 0 ≤ f(x)− f(y) +W1(x, y). Thus W2(x, y) = W1(x, y) + f(x)− f(y) ≥ 0.

Since (V,E,W2) is a weighted directed graph with no negative edges, we can apply Dijkstra’s
algorithm n times. The solution to the all-pairs problem on (V,E,W2) is simply the combination
of the n solutions to the single source problem, where each node is chosen once to be the source.
Our output consists of arrays {V2(u, v)} and {back (u, v)} For all (u, v) ∈ V × V . However, we
would like the values for the original problem, where the edge weights are given by W1. We can
create the final matrix {V1(u, v)} by setting V1(u, v) = V2(u, v)− f(x) + f(y).
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Figure 1: G, a weighted directed graph.
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Figure 2: The augmented graph G∗. Not all the augmentation edges are shown.

Exercise

Fill in the values of f in Figure 3(a), then fill in the values of W2 in Figure 3(b).
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Figure 3

The A* Algorithm

The A* algorithm solves the single pair shortest path problem fast under some circumstances.
We assume that G is a directed graph with a weight function W1, such that there are no negative
cycles, and that s and t are distinguished source and target nodes. We also assume that we are
given a heuristic h on V condition that h(x) ≤ W1(x, y) + h(y) for any edge (x, y) of G. Let
W2(x, y) = W1(x, y)− h(x) + h(y). We can then solve the single pair shortest problem in G1 by
solving the same problem for (V,E,G2).

Will it be faster? That depends on the heuristic. Remember: there is no general way to find a
heuristic; it has to come out of the specific application in some way, or be given to you by the
person (me in this case) who gives you the problem.

Exercise

Consider the graph G illustrated below. Figure 4(a) shows G has a weighted graph, where the
number on an edge {x, y} is equal to both W1(x, y) and W1(y, x). That is, we can think of G1 as
a symmetric weighted graph. How much time would it take to find the shortest path from s to
t? Your heap would eventually contain all the nodes. (Or maybe all but one; I’m not sure.) So,
you pay for the single source solution, even though you don’t need it.

Figure 4(b) shows the heuristic, in red. (Don’t ask how I came up with it. I just made up numbers
that work.)

1. Mark the Figure 7 with the second weight function, W2.

2. Use Dijkstra’s algorithm for G2 = (G,W2) to find the shortest path, in G1, from s to t. It
is amazingly fast.
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Figure 4

Here the exercise. Fill in the adjusted edge weights in Figure 5. Note that each edge has been
replaced by two Edges, one in each direction. When you now run Dijkstra’s algorithm, which
nodes will be left on the heap? Which nodes will never even be inserted into the heap?
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Don’t look at these pages until you finish answering the questions.
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Figure 6
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