Loop Invariants

4. Give a useful loop invariant of each loop. Indicate the places in the code where the invariant
holds.

(a) For this problem, assume that A[0]...A[n — 1] is an array of integers, where n is a
positive integer. Loop Invariant: A[i] = min {A[k] : 0 < k < j}
int i = 0;
int j 0;

// loop invariant holds here
while(j < n-1){
// loop invariant holds here
if(A[j] < A[LD) i = j;
j++;
// loop invariant holds here
b

// loop invariant holds here

(b) For this problem, assume that A[0] ... A[n—1] is a sorted array of integers, where n is a
positive integer, and that B is an integer. Loop Invariant: A[k] < B for all 0 < k < 1o,
and Ak] > B for all hi < k < n.

int 1lo
int hi

0;
n;

// loop invariant holds here
while(lo < hi){
// loop invariant holds here
int mid = (lo+hi)/2; // truncated division, as in C++
if (A[mid] < B) lo = mid+1;
else hi = mid;
// loop invariant holds here

// loop invariant holds here
if () cout << "Yes" << endl; // I need to insert a condition here!
else cout << "No" << endl;

It should be clear to you what the purpose of this code is. What do you think the
condition of the if statement should be?

The purpose of this code is to decide whether there is some entry of A which is equal
to B. The condition is: A[hi] == B. You could write A[1o] == B, since lo = hi.

(c) For this problem, assume that X[0]...X[n — 1] is an array of real numbers, where n
is a positive integer. Loop Invariant: sumPositive is the sum of the all the positive
entries in the array of index less than i. That is, all the positive entries of the prefix
X[0]...X[i—1].

real sumPositive = 0;
int i = 0;
// loop invariant holds here
while (i < n){
// loop invariant holds here
if (X[i] > 0)
sumPositive += X[i];
// loop invariant DOES NOT HOLD here
i++;

b

// loop invariant holds here

// loop invariant holds here
cout << sumPositive << endl;

