The SMAWK Algorithm

Lawrence L. Larmore UNLV

1 Introduction

The SMAWK algorithm finds all row minima of a totally monotone matrix, such as the one below. The name "SMAWK" is an acronym consisting of the first letters of the last names of the five developers of the algorithm. [1]

Monotonicity. A 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is defined to be monotone if the following two conditions hold:

1. If $c<d$, then $a<b$.

2 . If $c=d$, then $a \leq b$.
A rectangular matrix is defined to be totally monotone if every 2×2 submatrix is monotone. Recall that a submatrix does not have to consist of adjacent rows or columns. For example, $\left[\begin{array}{ll}28 & 37 \\ 44 & 33\end{array}\right]$ is a submatrix of the 9×18 matrix shown below, obtained by taking the $3^{\text {rd }}$ and $6^{\text {th }}$ rows and the $7^{\text {th }}$ and $9^{\text {th }}$ columns.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	25	21	13	10	20	13	19	35	37	41	58	66	82	99	124	133	156	178
2	42	35	26	20	29	21	25	37	36	39	56	64	76	91	116	125	146	164
3	57	48	35	28	33	24	28	40	37	37	54	61	72	83	107	113	131	146
4	78	65	51	42	44	35	38	48	42	42	55	61	70	80	100	106	120	135
5	90	76	58	48	49	39	42	48	39	35	47	51	56	63	80	86	97	110
6	103	85	67	56	55	44	44	49	39	33	41	44	49	56	71	75	84	96
7	123	105	86	75	73	59	57	62	51	44	50	52	55	59	72	74	80	92
8	142	123	100	86	82	65	61	62	50	43	47	45	46	46	58	59	65	73
9	151	130	104	88	80	59	52	49	37	29	29	24	23	20	28	25	31	39

The algorithm uses two reductions, which are applied alternately and recursively. The first reduction, which we call INTERPOLATE, reduces the problem of finding the row minima of an $n \times m$ totally monotone matrix to the problem of finding the row minima of a $\left\lfloor\frac{n}{2}\right\rfloor \times m$ totally monotone matrix. We use this reduction when $m \leq n$.

The second reduction, which we call REDUCE, reduces the problem of finding the row minima of an $n \times m$ totally monotone matrix to the problem of finding the row minima of an $n \times m^{\prime}$ totally monotone matrix for some $m^{\prime} \leq n$. We use this reduction when $m>n$.

2 REDUCE

Since our example matrix has more columns than rows, we will start with REDUCE.
Consider an $n \times m$ totally monotone matrix M. Write $M[i, j]$ for the entry of M in the i th row and the $j^{\text {th }}$ column. We write C_{j} for the j th column of M.

The fundamental idea of REDUCE is to compare two entries in the same row, and then to use the monotonicity property to eliminate part of one of the two columns. More specifically, if $M[i, j]<M[i, k]$, for $j<k$, we can eliminate all entries of the form $M[\ell, j]$, for $\ell \geq i$, from consideration. On the other had, if $M[i, j]>M[i, k]$, we can eliminate all entries of the form $M[\ell, k]$, for $\ell \leq i$. If they are equal, we get our choice.

Our goal is to delete at least $m-n$ columns of M. We then continue SMAWK on the matrix consisting of the surviving columns.

We maintain a stack S of surviving columns. Each column on the stack has a head which is its topmost surviving entry. All entries of a column on the stack which are above the head are deleted. Initially, S is empty.

We process the columns one at a time, from left to right. When we process the column C_{j}, we execute the following steps.

1. If S is empty, push the C_{j} onto the stack, and mark its first entry i.e., the entry in row 1 , as its head.
2. Otherwise, iterate the following loop until either S is empty or C_{j} is defeated.
(a) Let C_{ℓ} be the top entry of S. Let $M[i, \ell]$ be the head of C_{ℓ}.
(b) Compare $M[i, \ell]$ and $M[i, j]$. We will then execute one of the following three steps.
i. If $M[i, j] \leq M[i, \ell]$, then pop C_{ℓ} off $S . C_{\ell}$ has now been eliminated. (The loop continues, as C_{j} attacks the next column on the stack.)
ii. If $M[i, j]>M[i, \ell]$ and $i=n$, then C_{j} is defeated and eliminated. Exit the loop.
iii. If $M[i, j]>M[i, \ell]$ and $i<n$, then C_{j} is defeated, but still survives. Push C_{j} onto S, and mark $M[i+1, j]$ as its head. Exit the loop.

When all columns have been processed, the heads of all surviving columns are in different rows. Thus, there can be at most n surviving columns. The reduced matrix consists of all surviving columns and all rows. The row minima of the reduced matrix are the row minima of M.

2.1 An Example Execution of REDUCE

We will walk through REDUCE for the matrix given in the introduction.

We first push C_{1} onto $S . S$ consists only of C_{1}, and the head of that columns is enclosed in a square.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	25	21	13	10	20	13	19	35	37	41	58	66	82	99	124	133	156	178
2	42	35	26	20	29	21	25	37	36	39	56	64	76	91	116	125	146	164
3	57	48	35	28	33	24	28	40	37	37	54	61	72	83	107	113	131	146
4	78	65	51	42	44	35	38	48	42	42	55	61	70	80	100	106	120	135
5	90	76	58	48	49	39	42	48	39	35	47	51	56	63	80	86	97	110
6	103	85	67	56	55	44	44	49	39	33	41	44	49	56	71	75	84	96
7	123	105	86	75	73	59	57	62	51	44	50	52	55	59	72	74	80	92
8	142	123	100	86	82	65	61	62	50	43	47	45	46	46	58	59	65	73
9	151	130	104	88	80	59	52	49	37	29	29	24	23	20	28	25	31	39

In the next step, C_{2} challenges and eliminates C_{1}. Since S is now empty, C_{2} is pushed onto the stack, with head $M[1,2]$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		21	13	10	20	13	19	35	37	41	58	66	82	99	124	133	156	178
2		35	26	20	29	21	25	37	36	39	56	64	76	91	116	125	146	164
3		48	35	28	33	24	28	40	37	37	54	61	72	83	107	113	131	146
4		65	51	42	44	35	38	48	42	42	55	61	70	80	100	106	120	135
5		76	58	48	49	39	42	48	39	35	47	51	56	63	80	86	97	110
6		85	67	56	55	44	44	49	39	33	41	44	49	56	71	75	84	96
7	105	86	75	73	59	57	62	51	44	50	52	55	59	72	74	80	92	
8	123	100	86	82	65	61	62	50	43	47	45	46	46	58	59	65	73	
9	130	104	88	80	59	52	49	37	29	29	24	23	20	28	25	31	39	

In the next two steps, C_{3} challenges and eliminates C_{2}, and C_{4} challenges and eliminates C_{4}. The resulting matrix:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1			10	20	13	19	35	37	41	58	66	82	99	124	133	156	178	
2			20	29	21	25	37	36	39	56	64	76	91	116	125	146	164	
3				28	33	24	28	40	37	37	54	61	72	83	107	113	131	146
4				42	44	35	38	48	42	42	55	61	70	80	100	106	120	135
5			48	49	39	42	48	39	35	47	51	56	63	80	86	97	110	
6			56	55	44	44	49	39	33	41	44	49	56	71	75	84	96	
7			75	73	59	57	62	51	44	50	52	55	59	72	74	80	92	
8			86	82	65	61	62	50	43	47	45	46	46	58	59	65	73	
9			88	80	59	52	49	37	29	29	24	23	20	28	25	31	39	

In the next step, C_{5} challenges C_{4} and is defeated. It is then pushed onto S, with head $M[2,5]$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				10		13	19	35	37	41	58	66	82	99	124	133	156	178
2				20	29	21	25	37	36	39	56	64	76	91	116	125	146	164
3				28	33	24	28	40	37	37	54	61	72	83	107	113	131	146
4				42	44	35	38	48	42	42	55	61	70	80	100	106	120	135
5				48	49	39	42	48	39	35	47	51	56	63	80	86	97	110
6				56	55	44	44	49	39	33	41	44	49	56	71	75	84	96
7				75	73	59	57	62	51	44	50	52	55	59	72	74	80	92
8				86	82	65	61	62	50	43	47	45	46	46	58	59	65	73
9			88	80	59	52	49	37	29	29	24	23	20	28	25	31	39	

In the next step, C_{6} challenges and eliminates C_{4}, since $21 \leq 29$. It then challenges C_{4} and is defeated, since $13>10$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				10			19	35	37	41	58	66	82	99	124	133	156	178
2				20		21	25	37	36	39	56	64	76	91	116	125	146	164
3				28		24	28	40	37	37	54	61	72	83	107	113	131	146
4				42		35	38	48	42	42	55	61	70	80	100	106	120	135
5			48		39	42	48	39	35	47	51	56	63	80	86	97	110	
6			56		44	44	49	39	33	41	44	49	56	71	75	84	96	
7			75		59	57	62	51	44	50	52	55	59	72	74	80	92	
8				86		65	61	62	50	43	47	45	46	46	58	59	65	73
9			88		59	52	49	37	29	29	24	23	20	28	25	31	39	

In the next step, C_{7} challenges C_{6} and is defeated, since $21<25$. In the following step, C_{8} challenges C_{7} and is defeated, since $28<40$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				$\boxed{10}$					37	41	58	66	82	99	124	133	156	178
2				20		$\boxed{21}$			36	39	56	64	76	91	116	125	146	164
3				28		24	28		37	37	54	61	72	83	107	113	131	146
4				42		35	38	48	42	42	55	61	70	80	100	106	120	135
5				48		39	42	48	39	35	47	51	56	63	80	86	97	110
6				56		44	44	49	39	33	41	44	49	56	71	75	84	96
7			75		59	57	62	51	44	50	52	55	59	72	74	80	92	
8				86		65	61	62	50	43	47	45	46	46	58	59	65	73
9				88		59	52	49	37	29	29	24	23	20	28	25	31	39

In the next step, C_{9} challenges and eliminates C_{8}, and then challenges C_{7} and is defeated. In the following step, C_{10} challenges and eliminates C_{9}, since $42 \leq 42$. Then, C_{10} challenges C_{7} and is defeated.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				$\boxed{10}$							58	66	82	99	124	133	156	178
2				20		$\boxed{21}$					56	64	76	91	116	125	146	164
3				28		24	28				54	61	72	83	107	113	131	146
4				42		35	38			$\boxed{42}$	55	61	70	80	100	106	120	135
5				48		39	42			35	47	51	56	63	80	86	97	110
6				56		44	44			33	41	44	49	56	71	75	84	96
7			75		59	57			44	50	52	55	59	72	74	80	92	
8				86		65	61			43	47	45	46	46	58	59	65	73
9				88		59	52			29	29	24	23	20	28	25	31	39

In the next five steps, each new column is defeated in its first challenge, and gets pushed onto S, because $55>42,51>47,49>44,59>55$, and $58>46$.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				10												133	156	178
2				20		$\boxed{21}$										125	146	164
3				28		24	28									113	131	146
4				42		35	38			42						106	120	135
5				48		39	42			35	$\boxed{47}$					86	97	110
6				56		44	44			33	41	$\boxed{44}$				75	84	96
7				75		59	57			44	50	52	55			74	80	92
8				86		65	61			43	47	45	46	46		59	65	73
9				88		59	52			29	29	24	23	20	28	25	31	39

In the next step, C_{16} challenges and eliminates C_{15}, and then challenges C_{14} and is defeated.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				$\boxed{10}$													156	178
2				20		$\boxed{21}$											146	164
3				28		24	$\boxed{28}$										131	146
4				42		35	38			$\boxed{42}$							120	135
5				48		39	42			35	$\boxed{47}$						97	110
6				56		44	44			33	41	$\boxed{44}$					84	96
7				75		59	57			44	50	52	$\boxed{55}$				80	92
8				86		65	61			43	47	45	46	$\boxed{46}$			65	73
9				88		59	52			29	29	24	23	20		25	31	39

In the last two steps, C_{17} and C_{18} each challenge C_{16} and are defeated. However, since the head of C_{16} is in the $n^{\text {th }}$ row, these columns are eliminated and not pushed onto S.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				$\boxed{10}$														
2				20		21												
3				28		24	$\boxed{28}$											
4				42		35	38			$\boxed{42}$								
5				48		39	42			35	$\boxed{47}$							
6				56		44	44			33	41	$\boxed{44}$						
7			75		59	57			44	50	52	$\boxed{55}$						
8				86		65	61			43	47	45	46	46				
9				88		59	52			29	29	24	23	20		25		

The row minima of M must be located in the entries that have not been eliminated. They need not be the heads of the columns.

We continue the recursion by executing SMAWK on the square matrix consisting of the surviving columns:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1				10		13	19			41	58	66	82	99		133		
2				20		21	25			39	56	64	76	91		125		
3				28		24	28			37	54	61	72	83		113		
4				42		35	38			42	55	61	70	80		106		
5				48		39	42			35	47	51	56	63		86		
6				56		44	44			33	41	44	49	56		75		
7			75		59	57			44	50	52	55	59		74			
8				86		65	61			43	47	45	46	46		59		
9				88		59	52			29	29	24	23	20		25		

Since the reduced matrix has at least as many rows as columns, the recursive application of SMAWK will begin with INTERPOLATE. Despite the fact that we know that almost half the reduced matrix could not contain any row minima, we do not use this information in the next step.

3 INTERPOLATE

References

[1] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987.

