More on HW7: The Two Traveling Salesmen Problem

Hints:

Examples:

Let G have n vertices, named $1,2, \ldots n$, in topological order. Thus, there is no edge (i, j) if $i \geq j$.
Example 1: Let $n=20$, and let G be a complete acyclic directed graph, i.e., there is an edge from i to j if and only if $i<j$. Let the weights $\{W(i, j)\}$ be given by the following table; for example, $W(1,2)=5$. A blank entry means that $W(i, j)$ is undefined, or ∞ if you prefer.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		5	6	7	8	6	8	5	8	4	6	6	4	4	3	9	1	9	3	4
2			5	8	8	5	5	6	4	9	8	1	4	1	6	1	4	8	9	8
3				2	8	8	9	5	8	8	5	5	8	7	2	7	6	6	2	5
4					9	7	5	1	4	5	3	2	7	7	5	2	6	2	1	3
5						6	2	6	3	6	4	9	9	7	5	4	6	4	9	7
6							1	1	9	7	6	7	2	2	4	2	7	3	6	4
7								3	6	1	4	6	9	9	1	6	2	6	2	9
8									6	6	3	4	5	5	3	6	2	4	1	7
9										6	3	2	8	2	9	4	6	8	1	1
10											6	8	7	1	9	9	8	5	5	9
11												1	6	5	7	1	1	4	3	9
12													2	4	3	5	2	7	3	8
13														4	9	1	2	7	6	6
14															8	3	5	5	9	1
15																9	6	1	9	3
16																3	1	7	8	
17																2	6	7		
18																	8	3		
19																			3	
20																				

When I ran my progam with this input, I got the following output:

```
Start at 1
Move to 2 at cost 5
Move to 3 at cost 5
Move to 4 at cost 2
Move to 8 at cost 1
Move to 9 at cost 6
Move to 11 at cost 3
Move to 12 at cost 1
Move to 13 at cost 2
Move to 16 at cost 1
Move to 17 at cost 3
Move to 19 at cost 6
Move to 20 at cost 3
Start at 1
Move to 5 at cost 8
Move to 6 at cost 6
Move to 7 at cost 1
Move to 10 at cost 1
Move to 14 at cost 1
Move to 15 at cost 8
Move to 18 at cost 1
Move to 20 at cost 3
Total cost: 67
```

