A Topological Sorting Algorithm

UNLV: Analysis of Algorithms Lawrence L. Larmore

Topological Order

Given a directed graph \(G = (V, E) \), a topological ordering of \(G \) is an ordering “<” such that \(u < v \) if \((u, v) \in E\). If \(G \) is acyclic it has at least one topological order, but if \(G \) is cyclic, \textit{i.e.}, has a cycle, it does not have a topological order.

The algorithm written below writes the vertices of \(G \) in topological order, provided \(G \) is acyclic. The algorithm assumes \(G \) is already represented by both in-neighbor lists and out-neighbor lists.

\begin{verbatim}
Q := EmptyQueue
for all v in V
 NumSource[v] := Indegree(v)
 if (NumSource[v] = 0)
 Insert(Q,v)
 endif
endfor
while not Empty(Q) do
 u := Dequeue(Q)
 Write(u)
 for all w in OutNbrs(u) do
 NumSource[w] := NumSource[w] - 1
 if (NumSource[w] = 0)
 Insert(Q,w)
 endif
 endfor
endwhile
if (not Empty(Q))
 Write(’ The graph has a cycle.’)
endif
\end{verbatim}

Note that I am using a queue. You could use a stack instead, in fact, you could use any priority queue.

The running time of this algorithm is \(O(n + m) \). If \(G \) is cyclic, the algorithm will halt with the queue not empty.