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Abstract. A silent self-stabilizing asynchronous distributed algorithm,
SSLE, for the leader election problem, in a connected unoriented network
with unique IDs, is given. SSLE uses O(log n) space per process and
stabilizes in O(n) rounds, where n is the number of processes in the
network.
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1 Introduction

In this paper, we give a self-stabilizing silent asynchronous distributed algorithm
for the leader election problem, where all process in a network must agree on
which one of them is the leader. A self-stabilizing system, regardless of the
initial states of the processes and initial messages in the links, is guaranteed
to converge to the intended behavior in finite time; the algorithm is also called
silent if eventually all execution halts [4, 5].

1.1 Related Work

Arora and Gouda [2] present a silent leader election algorithm in the shared mem-
ory model. Their algorithm requires O(N) rounds and O(log N) space, where N

is a given upper bound on n, the size of the network. Dolev and Herman [6]
give a non-silent leader election algorithm in the shared memory model. This
algorithm takes O(diam) rounds, where diam is the diameter of the network,
and uses O(N log N) space. Awerbuch et al.[3] solve the leader election problem
in the message passing model. Their algorithm takes O(diam) rounds and uses
O(log D log N) space, where D is a given upper bound on the diameter.

Afek and Bremler [1] introduce the concept of power supply which they use
to construct an algorithm for the leader election problem in the message passing
model. Their algorithm takes O(n) time and uses O(log n) bits per process. Our
algorithm SSLE is partially inspired by Afek and Bremler’s algorithm.

1.2 Contributions

We present a self-stabilizing algorithm, SSLE, for the leader election algorithm,
in the composite atomicity model of computation. The space complexity of our
algorithm is O(log n) bits per process, and the time complexity is O(n). SSLE
does not require knowledge of any upper bounds on n or diam .
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More precisely. The time complexity of SSLE is actually O(simp), where
simp is defined to be the length of the longest simple path in the network; hence
simp ≤ n− 1. Afek and Bremler’s algorithm [1] also takes O(simp) rounds.

1.3 Outline of Paper

In Section 2, we describe our model of computation. In Section 3, we give our
self-stabilizing algorithm, SSLE. In Section 4, we give a sketch of the proof of
the correctness and time complexity of SSLE. Section 5 concludes the paper.

2 Preliminaries

We are given a connected undirected network, G = (V, E) of |V | = n processes,
where n ≥ 2. Each process P has a unique ID, P.id , of ID type, which could be
any ordered type, but which we take to be non-negative integer. We assume the
shared memory model of computation introduced in [4]. In this model, a process
P can read its own registers and those of its neighbors, but can write only to its
own registers.

The state of a process is defined by the values of its registers. A configuration

of the network is a function from processes to states; if γ is the current config-
uration, then γ(P ) is the current state of each process P . An execution of A is
a sequence of states e = γ0 7→ γ1 7→ . . . 7→ γi . . ., where γi 7→ γi+1 means that it
is possible for the network to change from configuration γi to configuration γi+1

in one step. We say that an execution is maximal if it is infinite, or if it ends at
a sink , i.e., a configuration from which no execution is possible.

The program of each process consists of a finite set of actions of the following
form: < label >:: < guard > −→ < statement >. The guard of an action in the
program of a process P is a Boolean expression involving the registers of P and
its neighbors. The statement of an action of P updates one or more variables of
P . An action can be executed only if it is enabled , i.e., its guard evaluates to
true. A process is said to be enabled if at least one of its actions is enabled. A
step γi 7→ γi+1 consists of one or more enabled processes executing an action.
The evaluations of all guards and executions of all statements of those actions
are presumed to take place in one atomic step; this model is called composite

atomicity [5].
We assume that each transition from a configuration to another is driven

by a scheduler , also called a daemon. If one or more processes are enabled, the
daemon selects at least one of these enabled processes to execute an action. We
assume that the daemon is also weakly fair , meaning that, if a process P is
continuously enabled, P must eventually be selected by the daemon.

We say that a process P is neutralized in the computation step γi 7→ γi+1

if P is enabled in γi and not enabled in γi+1, but does not execute any action
between these two configurations. The neutralization of a process represents the
following situation: at least one neighbor of P changes its state between γi and
γi+1, and this change effectively makes the guard of all actions of P false.
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We use the notion of round [5], which captures the speed of the slowest
process in an execution. We say that a finite execution ̺ = γi 7→ γi+1 7→ . . . 7→ γj

is a round if the following two conditions hold:

1. Every process P that is enabled at γi either executes or becomes neutralized
during some step of ̺.

2. The execution γi 7→ . . . 7→ γj−1 does not satisfy condition 1.

We define the round complexity of an execution to be the number of disjoint
rounds in the execution, possibly plus 1 if there are some steps left over.

2.1 Self-Stabilization and Silence

The concept of self-stabilization was introduced by Dijkstra [4]. Informally, we
say that distributed algorithm is self-stabilizing if, starting from a completely
arbitrary configuration, the network will eventually reach a legitimate configu-
ration.

More formally, we assume that we are given a legitimacy predicate LA on
configurations. Let LA be the set of all legitimate configurations, i.e., configu-
rations which satisfy LA. Then we define A to be self-stabilizing if the following
two conditions hold:

1. (Convergence) Every maximal execution contains some member of LA.
2. (Closure) If an execution e begins at a member of LA, then all configurations

of e are members of LA.

We say that A is silent if every execution is finite. In other words, starting
from an arbitrary configuration, the network will eventually reach a configuration
where no process is enabled.

3 The Leader Election Algorithm SSLE

In this section, we present a silent self-stabilizing algorithm, SSLE, that elects
the process of minimum ID in the network to be the leader, within O(n) rounds
of arbitrary initialization, using O(log n) space per process.

3.1 A Simplified Algorithm

We first describe a simplified algorithm for the leader election problem. let Leader

be the process of smallest ID in the network. Let P.leader be a process P ’s current
estimate of the ID of Leader and P.level be P ’s current estimate of its distance
to Leader .

For convenience, write P.key = (P.leader , P.level ), the key of P . Keys are
ordered lexically, i.e., P.key < Q.key if P.leader < Q.leader , or P.leader =
Q.leader and P.level = Q.level . For any P , let P.self = (P.id , 0), which we
call the self key of P . Succ(i, j) = (i, j + 1) for any ordered pair (i, j). Let
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Min Key Nbr(P ) to be the minimum value of Q.key among all Q ∈ NP , where
NP is the set of neighbors of P .

When the simplified algorithm converges, the following conditions will hold:

C1. P.key ≤ (P.id , 0)

C2. If P.key > Min Key Nbr(P ),
then P.key = Succ(Min Key Nbr(P )),
else P.key = (P.id , 0).

It follows easily that, if these conditions hold, P.leader = Leader .id for all P ,
and P.level will be the distance from P to Leader , and hence each process is
connected to the Leader by the shortest possible path.

Our simplified algorithm has only two actions, as follows:

A1. If (P.key > P.self ) ∨ (P.key ≤ Min Key Nbr(P )),
then P.key ← P.self .

A2. If Succ(Min Key Nbr(P )) < P.key ≤ P.self ,
then P.key ← Succ(Min Key Nbr(P )).

If, initially, P.leader ≥ Leader .id for all P , the simplified algorithm converges
within diam +1 rounds. In this case, Leader .self = (Leader .id , 0) is the smallest
possible key. After one round, Leader .key = Leader .self , and after t + 1 rounds,
all processes within distance t of Leader have their final keys.

3.2 The Problem of Fictitious Leaders

The simplified algorithm in Section 3.1 is not self-stabilizing, since because of
arbitrary initialization, P.leader could be initialized to a value of ID type which
is not the ID of any process in the network. In this case we say that P has
a fictitious leader . A fictitious leader that is greater than Leader .id is not a
problem, but if a fictitious leader is less than Leader .id , the network might
never get rid of that fictitious ID. We illustrate this possibility with a simple
example.

Consider a 2-process network with processes, P2 and P3, where Pi.id = i,
and where initially P2.key = (1, 0) and P3.key = P3.self = (3, 0). Suppose each
process executes one action during each round. After one round, P2.key = (2, 0)
and P3.key = (1, 1). After another round, P2.key = (1, 2) and P3.key = (3, 0).
After a total of 2t rounds, P2.key = (1, 2t), and P3.key = (3, 0). Thus, the
algorithm never stabilizes.

Using a known upper bound on the diameter. The problem of fictitious leaders
can be solved if an upper bound, D, on the diameter of the network is given.
Simply replace A1 by A1′:

A1′. If (P.key > P.self ) ∨ (P.key ≤ Min Key Nbr(P )) ∨ (P.level ≥ D),
then P.key ← P.self .
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By induction, it can be shown that if t rounds have elapsed since initialization,
and if a process P has a fictitious leader, then P.level ≥ t. Thus, after D + 1
rounds have elapsed, there will be no fictitious leader in the network. After at
most diam additional rounds, the algorithm converges. This method is similar
to the Arora and Gouda’s algorithm [2].

3.3 Formal Definition of SSLE

SSLE solves the fictitious leader problem by introducing color waves .

In SSLE, each process P has the following variables.

• P.parent ∈ NP ∪ {P}, the parent of P .

• P.key = (P.leader , P.level ), the key of P , where P.leader is of ID type, and
P.level is a non-negative integer.

• P.color ∈ {0, 1}.

• P.done , Boolean.

We also define the following functions on keys:

• Succ(i, j) = (i, j + 1)

• (i, j) < (k, ℓ) ≡ (i < k) ∨ ((i = k) ∧ (j < ℓ)), i.e., lexical order on keys.

Each process P has the following functions, which can be evaluated by P .

• Is True Root(P ) ≡ (P.parent = P ) ∧ (P.key = (P.id , 0)), P is a true root .

• Is True Chld(P ) ≡ (P.key = Succ(P.parent .key)) ∧ (P.leader < P.id), P is a
true child .

• Is False Root(P ) ≡ ¬Is True Root(P )∧¬Is True Chld(P ), P is a false root .

• Is Root(P ) ≡ Is True Root(P ) ∨ Is False Root(P ), P is a root .

• Min Key Nbr(P ) = min {Q.id : Q ∈ NP }, the minimum key of any neighbor.

• Can Improve(P ) ≡ Succ(Min Key Nbr(P )) < P.key , there is a neighbor of
P that would be a better parent than its current parent.

• Can Attach(P ) ≡ ∃Q ∈ NP : (Q.key = Min Key Nbr(P )) ∧ (Q.color = 1),
there is a process that P can attach to that is better than its current parent.

• Best Nbr(P ) = a neighbor Q ∈ NP such that Q.key = Min Key Nbr(P ) and
Q.color = 1. In case there is more than one choice, pick the one of lowest ID. In
case there is none, Best Nbr(P ) is undefined.

• Chldrn(P ) = {Q ∈ NP : (Q.parent = P ) ∧ Is True Chld(Q)}, the true chil-

dren of P .

• False Chldrn(P ) = {Q ∈ NP : (Q.parent = P ) ∧ (Is False Root(Q))}, the false

children of P .
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• Done(P ) ≡ (∀Q ∈ NP : Q.key ≤ Succ(P.key)) ∧
(∀Q ∈ Chldrn(P ) : Q.done)

Table 1: Actions of SSLE

A1 Attach Is True Root(P ) −→ P.parent

priority 1 Can Attach(P ) ← Best Nbr(P )
False Chldrn(P ) = ∅ P.key

← Succ(Best Nbr(P ))
P.color ← 0
P.done ← Done(P )

A2 Reset Is False Root(P ) −→ P.key ← (P.id , 0)
priority 1 False P.parent ← P

Root P.color ← 0
P.done ← Done(P )

A3 Detach Is True Chld(P ) −→ P.key ← (P.id , 0)
priority 1 True Can Improve(P ) P.parent ← P

Child P.color ← 0
P.done ← Done(P )

A4 Color 1 P.color = 0 −→ P.color ← 1
priority 2 P.parent .color = 0 P.done ← Done(P )

∀Q ∈ Chldrn(P ) : Q.color = 1
¬Is True Root(P ) ∨ ¬P.done

A5 Color 0 P.color = 1 −→ P.color ← 0
priority 2 P.parent .color = 1 P.done ← Done(P )

∀Q ∈ Chldrn(P ) : Q.color = 0
¬Is True Root(P ) ∨ ¬P.done

∀Q ∈ NP : Q.key ≤ Succ(P.key)

A6 Update P.done 6≡ Done(P ) −→ P.done ← Done(P )
priority 3 Done

We give the table of actions of SSLE in Table 1. The name of each action
is listed in the first column, along with its priority number. The guard of each
action is the conjunction of up to four clauses , listed in the third column. In
order for an action to be enabled, its guard must be true, and no action with a
lower priority number may be enabled.

We refer to Actions A2 and A3 as reset actions . We refer to Actions A1, A2,
and A3 as structure actions . We refer to Actions A4 and A5 as color actions .

3.4 Overview of SSLE

The correct value of P.key , and the value it will achieve eventually if the algo-
rithm is correct, is P.final key = (Leader .id ,Level (P )), where Level (P ) is the
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Fig. 1. Relations Among Classes of Processes and Trees

distance from P to Leader . If P.key < P.final key , we say that P is inferior .
We define an inferior tree to be a tree whose root is inferior. All inferior pro-
cesses belong to inferior trees, and all inferior trees are false trees. The relations
between the various sets of processes and trees are indicated in Figure 1.

As the algorithm progresses, processes leave trees and join other trees. When
SSLE has stabilized, all processes belong to one true tree rooted at Leader . A
process can easily detect that it is a false root, but a process that is not a root
has no way of knowing whether it is a member of a false tree. The problem we
face is that an inferior tree can continue to recruit new leaves, even as it deletes
itself starting from the root, and might never disappear.

3.5 Color Waves and Energy

Afek and Bremler solve the fictitious leader problem in their message-passing
leader election algorithm [1], by using the concept of “power supply,” the idea
being that a true root continuously supplies “power” to its tree, allowing it to
recruit new processes, whereas false trees will eventually run out of “power” and
be unable to recruit. In this paper, we introduce a similar concept. Each process
P has a color , either 0 or 1. Only processes of color 1 are allowed to recruit new
members of the tree, and the new recruits always have color 0. In addition, we
allow a process P to change color if P.parent .color = P.color , and if all its true
children have the opposite color. Processes change colors in convergecast waves
starting from the leaves of the trees.

A true root “absorbs” the color waves by alternating its own color, but a
false root cannot change color. Thus, in a false tree, color waves, which cannot
pass each other, eventually cause color deadlock , preventing further growth of
the tree.

At the same time a false root is enabled to reset (execute Action A2). Thus,
a false tree shrinks every round, but is limited in its growth. Deletion of a false
root can break the remainder of its tree into multiple smaller false trees, all with
the same leader.

In order to prove that, eventually, all inferior trees will be eliminated, we
define the energy of a tree, and show that the maximum energy of any false tree
decreases every round. For any process P , let
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β(P ) =























1 if Is Root(P ) ∧ (P.color = 0)
2 if Is Root(P ) ∧ (P.color = 1)
β(P.parent) if Is True Chld(P ) ∧ (P.color = 0) ∧

(P.parent .color = 1)
β(P.parent) + 2 otherwise

We define the energy of a tree to be the maximum value of β(P ) for any
process P in that tree, and we define B to be the maximum value of the energy
of any inferior tree. The energy of a tree can increase in only one way, and that is
by its root executing a color action. Thus a true tree can increase its energy, but
a false tree, such as an inferior tree, although it can recruit members, cannot
increase its energy. Furthermore, the energy of any tree decreases if its root
leaves the tree. Thus, since every false root is enabled to execute Action A2, its
energy decreases every round. Finally, since no new inferior trees can be created,
except by fragmentation of an existing inferior tree, the value of B decreases
every round.

Since the energy of any tree cannot exceed 2simp+2, the time required for all
inferior trees to be deleted is O(simp). Once there are no more inferior processes
in the network, SSLE will stabilize within O(simp) additional rounds. There will
then be just one tree T , rooted at Leader , which will be a breadth-first-search
spanning tree of the network.

After it has stabilized, SSLE may not yet be silent, since Actions A4, A5,
and A6 may continue to execute. In a convergecast wave starting at the leaves of
T , P.done will be set to true for all P . When Leader .done holds, it has received
acknowledgment from all other processes that it has been elected leader, and it
ceases to change color, because of the fourth clause of the guard of each color
action. Within O(diam) additional rounds, all other nodes stop changing color
as well.

Due to arbitrary initialization, Leader .done could be true even if the algo-
rithm is not finished. In this case, within O(diam) time, Leader .done will be set
to false, and SSLE will proceed normally.

3.6 Example Execution

In Figure 2, we show the sequence of configurations for an execution of SSLE
in one example, where the network consists of six processes in a chain. The IDs
of the processes are shown across the top of the figure. Each row shows one
configuration. Each process is represented by a box containing three numbers.
The leftmost number in the box representing a process P is P.leader , the middle
number is P.level , and the rightmost number is P.color . Arrows represent parent
pointers. If no arrow is shown from the box representing P , then P.parent = P .
In this example, Leader is the fifth node in the chain, and Leader .id = 2. We
assume that P.done is initially false for all P .

In our example computation, the initial configuration contains one inferior
tree consisting of the first four processes. The other two processes form singleton
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trees. For simplicity, we will assume that all enabled processes are selected at
each step; thus, each round consists of one step. When a process executes an
action, the name of that action is shown. For example, during the eighth step,
the first process, whose ID is 6, executes Action A1 to join the tree whose leader
is 4; changing its key from (6, 0) to (4, 2) and changing its color from 1 to 0. We
do not show Action A6 in the figure, nor do we show the values of Pi.done.

As the inferior tree grows to the right, it captures the rightmost two nodes,
but also shrinks on the left as its processes executes A2. After six steps, the
inferior tree is gone. The tree rooted at Leader then grows until it captures all
processes after 16 steps. All processes have now chosen 2 as the leader ID, their
choices will not change, and SSLE has stabilized.

We encourage the reader to verify that, in this example, B = 7 initially, then
drops to 5 in the first round, then to 4, then 3, then 2. B = 1 after five rounds,
and B = 0 thenceforth.

Although we only show the first 16 steps, we remark that Leader .done is true
after 21 steps. All actions will cease after 25 steps.

4 Proof of SSLE

A legitimate configuration for SSLE is a configuration where the following con-
ditions hold.

1. All processes belong to a true tree rooted at Leader .

2. If P is any process, then P.level is equal to the length of the shortest path
from P to Leader .

Recall that simp ≤ n−1 is the length of the longest simple path in the network.
Our main result follows.

Theorem 1. From arbitrary configuration, SSLE is self-stabilizing and silent

within O(simp) rounds.

In this section, we sketch the proof of Theorem 1. The proof sketches are
intuitive, and only touch lightly on the finer technical details. The complete
proof will be given in the full paper.

4.1 Additional Notation

• ||P, Q|| = the length of the shortest path from process P to process Q.

• Level(P ) = ||P,Leader ||.

• TP = the subtree rooted at P of the tree that contains P .
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4.2 Elimination of Inferior Processes

Recall that B is the maximum energy of any inferior tree, if there is any; oth-
erwise B = 0. By definition of β, we have B ≤ 2simp + 2. We will show that B

decreases during every round. Thus, there will be no inferior trees and hence no
inferior processes after 2simp + 2 rounds have elapsed from initialization.

In the statements and proofs of Lemmas 1 and 2, we will consider just one
given step of the execution, γt−1 7→ γt.

Lemma 1. If R is a false root at γt−1 and also at γt, then the energy of TR

does not increase during the step.

Proof. (Sketch.) Since R cannot execute a color action, β(R) cannot change. By
induction on the length of the parental path from P to R, we can show that, if
P ∈ TR both before and after the step, β(P ) cannot increase. In particular, if
P.color changes from 1 to 0, β(P ) decreases by 2, while β(P ) is unchanged in
all other cases.

Suppose, on the other hand, that P joins TR during the step, by attaching
to a process Q ∈ TR. Then Q.color = 1 both before and after the step, and
P.color = 0 after the step. β(P ) = β(Q) after the step, and β(Q) does not
change.

Lemma 2. If R is a false root and S ∈ TR at γt−1, where S 6= R, and if S is a

false root at γt, then the energy of TS at γt is less than the energy of TR at γt−1.

Proof. (Sketch.) During the step, S.parent leaves the tree, making S a root.
By induction on the length of the parental chain from S to R, we can prove
that β(S) at γt is less then β(R) at γt−1. Each step of the induction requires
examining several cases, depending on the colors of the processes both before
and after the step.

The rest of the proof is similar to that of Lemma 1.

Lemma 3. If B > 0, then B decreases during the next round.

Proof. (Sketch.) By Lemmas 1 and 2, B cannot increase at any step. Since any
inferior root is a false root, and every false root is enabled to execute Action A2,
every inferior root will reset during the round. By Lemma 2, B will decrease.

Lemma 4. After 2simp + 2 rounds have elapsed from initialization, there are

no inferior processes.

Proof. (Sketch.) By the definition of β, B ≤ 2simp + 2. By Lemma 3, B = 0
after 2simp + 2 rounds. Since every inferior process must belong to an inferior
tree, we are done.
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4.3 Convergence After Elimination of Inferior Processes

After there are no more inferior processes, Leader is a true root within at most
one more round, after which Leader remains a true root. SSLE then stabilizes
within O(simp) additional rounds, as we shall explain in this section.

Although it appears to be intuitively obvious that SSLE will stabilize, we
have failed to find a simple proof. Our proof, which will appear in the journal
version, uses a complex potential argument.

The complexity of our argument is caused by the fact that only processes
whose color is 1 can recruit, and thus recruitment of processes by TLeader can be
delayed if processes are forced to wait to change color. This delay has two rather
different causes, making it difficult to obtain a proper potential to measure the
maximum number of rounds needed to stabilize.

One source of the delay is color deadlock , which we have already discussed.
If the sequence of colors of a parental chain in TLeader is of the form (01)∗,
i.e., maximally impacted color waves, it is color deadlocked except at the root
end. The “traffic jam” is slowly cleared out as Leader absorbs the waves by
alternating its own color.

Much worse is the delay caused if all processes have color 0. In this case,
none of the processes in the tree can recruit. A color wave can only start at the
leaves of the tree, which can be very far from the root, and no process in the
tree can recruit until that color wave reaches it.

We say that a process P is exact if P.key = P.final key . At some step
within O(simp) rounds of initialization, every exact process which is a mem-
ber of TLeader will have color 1. Neighbors of those processes of color 1 will
attach to them by executing structure actions. Within O(diam) rounds after
every exact process in TLeader has had a chance to have color 1, all processes will
join TLeader and become exact.

Potentials The arguments used to prove convergence make use of a potential
Σ, whose definition is quite complex.

Let:

T = TLeader

T ⋆ = {P ∈ T : P.level = Level (P )}

T [1] = {P ∈ T : P.color = 1}

θ(P ) =































−∞ if P 6∈ T
0 if P = Leader

θ(P.parent) + 2 if P ∈ T , P 6= Leader ,

and P.color = P.parent .color

θ(P.parent)− 2 if P ∈ T , P 6= Leader ,

and P.color 6= P.parent .color
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ǫ(P, Q) =







θ(Q) + 1 if Q ∈ NP ∩ T [1] and Succ(Q.key) < P.key

and Is True Root(P ) and False Chldrn(P ) = ∅
−∞ otherwise

ǫ(P ) = max
Q
{ǫ(P, Q)}

ζ(P, Q) =















θ(Q) + 2 if ¬Is True Root(P ) and Q ∈ NP.parent ∩ T [1]

and Is True Root(P.parent)
and Succ(Q.key) < P.parent .key

−∞ otherwise

ζ(P ) = max
Q
{ζ(P, Q)}

η(P, Q) =







θ(Q) + 3 if Q ∈ NP ∩ T [1] and ¬Is True Root(P )
and Succ(Q.key) < P.key

−∞ otherwise

η(P ) = max
Q
{η(P, Q)}

σ(P ) = max {θ(P ), ǫ(P ), ζ(P ), η(P )}

Σ = max {σ(P )}

Note that Σ depends only on the configuration. Chasing definitions, it is fairly
easy to verify that 0 ≤ Σ < 2simp − 1.

Let γ∗ be the first configuration in the execution at which Leader is a true
root and there are no inferior processes. Let Σ∗ be the value of Σ at that
configuration.

We omit the proof of the following lemma, which is very technical and several
pages long.

Lemma 5. If Leader is a true root and there are no inferior processes, Then,

for any integer c > 0, Leader will execute a color action at least c times during

the next Σ + 5c− 4 rounds, provided Leader .done is false during those rounds.

The color potential. We define a function τ on T , which we call the color

potential , as follows:

– τ(Leader ) = the number of times Leader has executed a color action since
γ∗.

– If P ∈ T and P 6= Leader , then

τ(P ) =

{

τ(P.parent) if P.color = P.parent .color

τ(P.parent) + 1 if P.color 6= P.parent .color

Lemma 6. Suppose the configuration is good, P ∈ T , and P remains in T after

the next step. Then, during that step, τ(P ) increases by 1 if P executes a color

action, and is unchanged otherwise.
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Proof. By induction on P.level . If P.level = 0, then P = Leader , and we are
done by definition of τ . Otherwise, let Q = P.parent . Suppose P.color changes.
By the guards of the color actions, P.color = Q.color and hence τ(P ) = τ(Q)
before the step, and Q cannot execute a color action during that step. By the
inductive hypothesis, τ(Q) does not change; thus τ(P ) increases by 1, by the
definition of τ .

Suppose Q.color changes. By the guards of the color actions, P.color 6= Q.color

and hence τ(P ) = τ(Q) + 1 before the step, and P cannot execute a color
action during that step. By the inductive hypothesis, τ(Q) increases by 1; thus
τ(P ) = τ(Q) after the step, by the definition of τ , and hence is unchanged.

Suppose neither P nor Q executes a color action. By the inductive hypothesis,
Q.color remains unchanged, and thus τ(P ) remains unchanged, by the definition
of τ .

Lemma 7. Eventually, T ⋆ contains every process.

Proof. By induction on Level(P ). Leader ∈ T ⋆ within 2simp +2 rounds. Within
simp additional rounds, Leader .done is false. Suppose P 6= Leader . Pick Q ∈
NP such that Level(Q) = Level (P ) − 1. By the inductive hypothesis, Q ∈ T ⋆

eventually. By Lemma 5, P will eventually execute Action A5, which implies
that P ∈ T ⋆ at that time.

Lemma 8. Let γP be the first good configuration where P ∈ T ⋆. Then τ(P ) ≤
3Level(P ) at γP .

Proof. By induction on Level (P ). If Level(P ) = 0, then P = Leader , γP = γ∗,
and we are done, by definition of τ .

Suppose Level (P ) = L ≥ 1. Assume that τ(P ) > 3L at γP . Let Q = P.parent .
Then, τ(Q) ≥ 3L and Q ∈ T ⋆. By the inductive hypothesis, τ(Q) was at most
3L− 3 at the configuration γQ. After Q changes color two more times, P must
have joined T ⋆, and τ(Q) ≤ 3L − 1 by Lemma 6. Thus, τ(P ) ≤ 3L at γP ,
contradiction.

Let B0 be the value of B at initialization.

Lemma 9. SSLE stabilizes within B0 + Σ∗ + 15(diam) rounds of arbitrary ini-

tialization.

Proof. Let P be any process, and let L = Level(P ). By Lemma 3, the configura-
tion γ∗ is reached within B0+1 of initialization. Let γP be the first configuration
after γ∗ at which P ∈ T ⋆. By Lemma 8, τ(P ) ≤ 3L at γP .

Let γ′ be the configuration B0 + simp +Σ∗ +15L rounds after initialization. By
Lemma 5, τ(Leader ) ≥ 3L + 1 at γ′.

Suppose that γP occurs after γ′. Then τ(P ) ≥ τ(Leader ) ≥ 3L + 1 at γP ,
contradiction. Since L ≤ diam , our result follows.
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Lemma 10. SSLE is silent within B0 + simp + Σ∗ + 18(diam) + 2 rounds.

Proof. Let L = max {Level(P )}. By Lemma 9, SSLE stabilizes within B0 +
simp + Σ∗ + 15(diam) rounds. Within L rounds additional rounds, Leader .done

holds. Let Θ = max {θ(P ) : θ(P ) + 2Level(P ) > 0}, with the default value Θ =
−L if θ(P )+2Level(P ) = 0 for all P . Let ∆ = 1

2
Θ +L, which is an integer since

θ is even. ∆ ≤ 2L, and as long as ∆ > 0, it must decrease by at least 1 every
round, since every process P where θ(P ) + 2Level(P ) > 0 and θ(P ) = Θ must
execute a color action. When ∆ = 0, no further actions can be executed.

Our main result, Theorem 1, follows immediately from Lemma 10.

5 Conclusion

We present a silent self-stabilizing asynchronous distributed algorithm, SSLE, for
election of a leader of a network, where processes have unique IDs. The algorithm
stabilizes in O(n) rounds, using O(log n) space per process, and becomes silent
after an additional O(diam) rounds, under the weakly fair daemon.

SSLE is also silent and self-stabilizing under the unfair daemon. The proof
will be given in the journal version.
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