A Self-Stabilizing O(k)-Time K-Clustering Algorithm

Ajoy K. Datta* Lawrence L. Larmore
Priyanka Vemula
School of Computer Science, University of Nevada Las Vegas

Abstract

A silent self-stabilizing asynchronous distributed algorithms is given for constructing a k-
dominating set, and hence a k-clustering, of a connected network of processes with unique
IDs and no designated leader. The algorithm is comparison-based, takes O(k) time and uses
O(klogn) space per process, where n is the size of the network.

It is known that finding a minimal k-dominating set is NP-hard. A lower bound is given,
showing that no comparison-based algorithm for the k-clustering problem that takes o(diam)
rounds can approximate the optimal solution, where diam is the diameter of the network.

Keywords: K-clustering, self-stabilization.

1 Introduction

Let G = (V, E) be a connected graph. If z,y € V, we define ||z, y||, the distance from z to y, to
be the length of the shortest path from x to y. We also define

diameter(G) = max ||z,y||
dius(G) = i
radius(G) gélgfynea‘;(||,]|

Given a non-negative integer k, we define a k-cluster of G to be a non-empty subgraph of G of
radius at most k. If C is a k-cluster of G, we say that x € C' is a clusterhead of C if, for any
y € C, there is a path of length at most k in C' from x to y.

We define a k-clustering of G to be a set {Cy,...Cy,} of k-clusters of G such that every
vertex x € V lies in exactly one of the C;. The k-clustering problem is the problem of finding a
k-clustering of a given graph.!

A set of vertices D C V' is a k-dominating set of G if, for every z € V', there exists y € D such
that ||z, y|| < k. A k-dominating set gives rise to a k-clustering; for each x € V', let Leader(z) € D
be the member of D that is closest to x. For each y € D, let C;y = {x € V : Leader(x) = y}. Then
{Cy}ye p is a k-clustering of G. (Ties must be broken carefully to maintain the connectedness of
each cluster.) We say that a k-dominating set D is optimal if no k-dominating set of G has fewer
elements than D. The problem of finding an optimal k-dominating set is known to be N'P-hard.

*Contact Author: Ajoy K. Datta. Email: datta@cs.unlv.edu.
!There are several alternative definitions of k-clustering, or the k-clustering problem, in the literature.

1.1 Related Work

To the best of our knowledge, there exist only three asynchronous distributed solutions to the
k-clustering problem in mobile ad hoc networks (MANETS), in the comparison based model, i.e.,
where the only operation allowed on IDs is comparison. Amis et al. [1] give the first distributed
solution this problem. The time and space complexities of their solution are O(k) and O(klogn),
respectively. Spohn and Garcia-Luna-Aceves [9] give a distributed solution to a more generalized
version of the k-clustering problem. In this version, a parameter m is given, and each process
must be a member of m different k-clusters. The k-clustering problem discussed in this paper is
then the case m = 1. The time and space complexities of the distributed algorithm in [9] are not
given.

Two synchronous distributed algorithm which compute k-dominating sets using a non-comparison
based model are given in [6, 7]. A synchronous algorithm for k-clustering for wireless radio multi-
hop networks is presented in [8]. Amis et al. give a non-self stabilizing message passing algorithm
for the k-clustering problem which takes O(k) steps, and requires (3k+O(1)) logy n bits of memory
in each process [1].

Fernandess and Malkhi [5] give a non-self stabilizing message passing algorithm for the k-
clustering problem that uses O(logn) memory per process, takes O(n) steps, providing a BFS
tree for the network is already given. In the special case that the network is a unit disk graph
in the plane, their algorithm is 8k-competitive, meaning that the number of clusters constructed
by their algorithm is at most (8% + C') times the minimum possible number of clusters in a k-
clustering of the same network, where C' is a constant that depends neither on the network nor on
k. The proof of competitiveness given by Fernandess and Malkhi contains a flaw, although their
result is correct; they incorrectly state that at most k? disjoint disks of radius 1 can be placed in
a 2k x 2k square in the plane.

1.2 Contributions

None of the above mentioned solutions is self-stabilizing [2, 3]. Our algorithm, FLOOD, given
in Section 3, is similar to that of Amis et al. [1]. FLOOD uses only (2k + O(1))logyn bits
per process, approximately half that of [1]. FLOOD finds a k-dominating set in a network of
processes, assuming that each process has a unique ID. FLOOD is self-stabilizing and silent, and
takes 3k + O(1) rounds.

We say that an algorithm is comparison-based if the only operation it can use to distinguish
two IDs is comparison. FLOOD is comparison-based. In contrast, an algorithm that examines
individual bits of an ID is not comparison based. In Section 4, we give a case where FLOOD picks
the majority of processes in the network to be clusterheads. This duplicates the bad behavior
of Amis et al’s algorithm [1]. In Section 5, we show that this bad case is unavoidable in the
comparison model, i.e., that there is no competitive comparison-based self-stabilizing distributed
asynchronous algorithm for the k-clustering algorithm which takes o(diam) rounds, even if all
processes have unique IDs.

1.3 Outline of the Paper

In Section 2, we describe the model of computation used in the paper, and give some additional
needed definitions. In Section 3, we define the algorithm FLOOD, and prove its correctness and
time and space complexity. We also show an example execution of FLOOD, using the network
shown in Figure 3.1. In Section 4, we give a case where FLOOD performs badly, and in Section

5, we prove that this bad performance is unavoidable for any fast algorithm for the k-clustering
problem that uses only comparisons to distinguish IDs. Section 6 concludes the paper.

2 Preliminaries

We are given a connected undirected notwork, G = (V, E) of |V| = n processes, where n > 2, and
a distributed algorithm A on that network. Each process P has a unique ID, P.id, a non-negative
integer. We assume the shared memory model of computation introduced in [2]. In this model,
process P maintains registers. P can read its own registers and those of its neighbors, but can
write only to its own registers.

The state of a process is defined by the values of its registers. A configuration of the network
is a function from processes to states; if 7 is the current configuration, then ~(P) is the current
state of each process P. An execution of A is a sequence of states e = vy — v1 — ... — ...,
where v; — 7;+1 means that it is possible for the network to change from configuration ~; to
configuration ;11 in one step. We say that an execution is maximal if it is infinite, or if it ends
at a sink, i.e., a configuration from which no execution is possible.

The program of each process consists of a set of registers and a finite set of actions of the
following form: < label >:: < guard > — < statement >. The guard of an action in the
program of a process P is a Boolean expression involving the variables of P and its neighbors.
The statement of an action of P updates one or more variables of P. An action can be executed
only if it is enabled, i.e., its guard evaluates to true. A process is said to be enabled if at least one
of its actions is enabled. A step =; — ~;11 consists of one or more enabled processes executing
an action. The evaluations of all guards and executions of all statements of those actions are
presumed to take place in one atomic step; this model is called composite atomicity [3].

We assume that each transition from a configuration to another is driven by a scheduler, also
called a daemon. If one or more processes are enabled, the daemon selects at least one of these
enabled processes to execute an action. We assume that the daemon is also unfair, meaning that,
even if a process P is continuously enabled, P might never be selected by the daemon unless P is
the only enabled process.

We say that a process P is neutralized in the computation step ~; +— ;41 if P is enabled in ~;
and not enabled in v;41, but does not execute any action between these two configurations. The
neutralization of a process represents the following situation: at least one neighbor of P changes
its state between v; and v;4.1, and this change effectively makes the guard of all actions of P false.

We use the notion of round [4], which captures the speed of the slowest process in an execution.
We say that a finite execution ¢ = v; = 7,41 — ...+ 7, is a round if the following two conditions
hold:

1. Every process P that is enabled at v; either executes or becomes neutralized during some
step of p.

2. The execution ; + ... = 7;_1 does not satisfy condition 1.

We define the round complexity of an execution to be the number of disjoint rounds in the
execution, possibly plus 1 if there are some steps left over.

2.1 Self-Stabilization and Silence

The concept of self-stabilization was introduced by Dijkstra [2]. Informally, we say that A is
self-stabilizing if, starting from a completely arbitrary configuration, the network will eventually
reach a legitimate configuration.

More formally, we assume that we are given a legitimacy predicate £ 4 on configurations. Let
L4 be the set of all legitimate configurations, i.e., configurations which satisfy £4. Then we
define A to be self-stabilizing if the following two conditions hold:

1. (Convergence) Every maximal execution contains some member of IL 4.

2. (Closure) If an execution e begins at a member of L4, then all configurations of e are
members of IL 4.

We say that A is silent if every execution is finite. In other words, starting from an arbitrary
configuration, the network will eventually reach a configuration where no process is enabled.

3 The Algorithm FLOOD

In this section, we present a silent, self-stabilizing algorithm FLOOD, which computes a k-
clustering of a network. FLOOD uses O(klogn) space per process, and self-stabilizes within
O(k) rounds.

Throughout, we write Np for the set of all neighbors of P, and Up = Np U {P}.

Basic Idea of FLOOD. The basic idea of FLOOD is that a process P is chosen to be a clusterhead
if and only if, for some process (), P has the smallest ID of any process within k hops of Q). It
requires at most 2k rounds for each process to be informed that is, or is not a clusterhead.

A clustering of the network is then obtained by every process joining a tree rooted at the
nearest clusterhead; the processes of each tree become one cluster. Every process is within k& hops
of some clusterhead, and thus our clustering is a k-clustering.

Implementation of FLOOD. Each process P contains two arrays, P.minid[d] for 1 < d < k,
and P.maxminid|d] for 1 < d < k. In addition, P has variables P.leader and P.parent, both IDs,
and P.dist, a non-negative integer. Each of these variables has a stable value, namely that value
that each will have when FLOOD stabilizes. In Lemma 3.2, we will prove the following:

e The stable value of P.minid[d] is the smallest ID of any process within d hops of P. If
P.minid[k] = P.id, then P is a clusterhead, however, a process could be a clusterhead
without being the smallest ID within £ hops of itself. We thus need to compute another
array.

e The stable value of P.mazminid[d] is the largest value of Q.minid[k| for any process within
within d hops of P. P is a clusterhead if and only if the stable value of P.mazminid[k] is
P.id.

e The stable value of P.leader is the ID of P’s clusterhead, i.e., the clusterhead nearest to P.

e The stable value of P.dist is the distance from P to its clusterhead.

e If P is not a clusterhead, the stable value of P.parent is the ID of the neighbor of P on the
shortest path from P to its clusterhead, i.e., the parent of P in the BFS spanning tree of
its cluster; that is, P.leader = P.parent.leader and P.dist = P.parent.dist + 1.

e The stable values of leader define a spanning forest in the network, where the clusterheads
are the roots, and the trees are the k-clusters.

e All variables stabilize within 3k + 1 rounds of arbitrary initialization.

We say that a variable is consistent if no action which could alter that variable, or which has
a lower priority number, is enabled. We say that a variable is stable if all actions which could
change the value of that variable are silent. Thus, any stable variable is consistent. The converse
does not hold, however. It is possible for a process P and all its neighbors to be initialized in such
a way that P is not initially enabled to execute any action, which implies that all variables of P
are initially consistent; and yet, in a later round, some variables of some neighbors of P could
change in such a way that P is enabled to execute an action. P acts by checking its variables
against those of its neighbors. A variable of P is consistent if it satisfies the appropriate rule in
the list below.

e P.minid[l] = min{Q.id : Q € Up}.

e For d > 1, P.minid[d] = min {Q.minid[d — 1] : Q € Up}.

e P.marminid[l] = max {Q.minid[k] : Q € Up}.

e For d > 1, P.marminid[d] = max {Q.mazmin|d — 1] : Q € Up}.

e If P.dist =0, then P.parent = P.id.

o If P.dist > 0, then P.parent = min{Q.id : (Q € Np) A (Q.dist + 1 = P.dist)}.

e P.leader = P.parent.leader.

If all variables of P are consistent, then P is not enabled to execute any action. Otherwise, P
will identify the inconsistent variable of lowest priority number, and change its value to make it
consistent; where P.minid|d] has priority d, P.mazmin[d] has priority d + k, and P.dist, P.parent
and P.leader each have priority 2k + 1. To save time, FLOOD changes those last three variables
in a single action. When all variables of all processes are consistent, FLOOD is silent.

Resolving Ties. Ties, which occur when a process P is equidistant to two nearest clusterheads,
can be resolved arbitrarily. We choose to use the “lowest ID of neighbor” rule: if @1 and Q5 are
neighbors of P, where Q)1.id < Q2.id, and if, stably, P.dist = Q1.dist + 1 = Q)s.dist + 1, then the
stable value of P.parent might be Q1.id, but cannot be Qs.id.

3.1 Functions and Actions of FLOOD

We now give a formal definition of FLOOD. Each process P has the following variables. Each
variable is of ID type, except P.dist, which is a non-negative integer.

P.id.

P.minid[d] for 1 < d <k.
P.mazminid[d] for 1 < d < k.
P.dist.

P.parent.

P.leader.

Fach process P can evaluate the following functions by reading its variables and those of its
neighbors.

min {Q.id : Q € Up} ifd=1

MinldF(P,d) = { min {Q.minid[d — 1] : Q € Up} if2<d<k

max {Q.minid[k] : Q € Up} ifd=1

Maz MinldF(P,d) = { max {Q.mazminidld — 1] : Q €Up} f2<d<k

IsClusterhead F(P) = P.mazminid[k] = P.id, of Boolean type.

. /0 if IsClusterhead F'(P)
DistF(P) = { min {Q.dist +1 : Q € Np} otherwise
P.id if IsClusterhead F'(P)
Parent F(P) =< min{Q.id : (Q € Np) A
(Q.dist +1 = DistF(P))} otherwise
[Pud if IsClusterhead F'(P)
Leader F(P) = { P.parent.leader otherwise

The actions of FLOOD are given in Table 1. Each action is given a priority number. Each action’s
guard includes the condition given in the third column of the action tables, and also includes the
condition that no action which has an earlier priority number is enabled. We say that an action
becomes silent if it will never again be enabled. We say that a module (or a program) converges
if all its actions become silent.

Table 1: Actions of FLOOD

Al(d) Floodmin (P.minid[d] # MinIdF(P)) — P.minid[d] —
1<d<k MinIdF(P,d)
priority d

A2(d) Floodmax P.mazminid|d] # Max MinldF(P,d) — P.mazminid[d] —
1<d<k MazMinIdF(P,d)

priority k +d
A3 Clustering (P.dist # DistF(P))) V — P.dist < DistF(P)
priority 2k + 1 (P.parent # ParentF(P)) V P.parent —
(P.leader # Leader F(P)) Parent F'(P)
P.leader «—
Leader F'(P)

3.2 An Example Computation

In Figure 3.1, we give a network, which we call the standard graph. In Figure 3.2, which consists
of 12 subfigures, we illustrate the steps of a computation of FLOOD, where k = 4.

Figures 3.2(a) through 3.2(d) show the stable values of minid[i],« = 1...4, which are com-
puted by (Action Al). Figures 3.2(e) through 3.2(h) show the stable values of mazminidl[i],i =
1...4 which are computed by (Action A2). Figure 3.2(h) also shows the final selection of clus-
terheads, namely processes 10, 13, and 14. Clusterheads are indicated by larger dots in Figures
(h) through (1). Figures 3.2(i) though 3.2(1) demonstrate the growth of clusters around the three
clusterheads. Note that the cluster subgraphs are BFS trees rooted at the clusterheads.

We used boxed numbers and dashed polygonal lines to identify the different zones created by
the minid[i] (in Figures 3.2(a) through 3.2(d)) and mazminid][i]

30 51

50
36

63

o
A
ooy
i

75

R
7

87

39

ﬁ!

10

=
Sor’

\?

%ﬁ

»
N
o

I\
N
?
‘\w

12

Figure 3.1: An Example Network

(Figures 3.2(e) through 3.2(1)) values, where a zone is defined to be the set of processes whose
value of minid[i] or maxminli], for a given i, is the same.

For example, in Figure 3.2(a), processes 18, 37, 66, 76, and 93 computed 18 as their minid[1].
In Figure 3.2(h), processes 13, 21, 32, 36, 39, 50, 63, 75, and 87 computed 13 as their maxminid[4]
and their final clusterhead. Note that in Figure 3.2(d), process 14, which will be chosen to be a
clusterhead because it is the minid of some processes, is not a member of its own zone.

Figure 3.2: Sequence of configurations illustrating FLOOD.

3.3 Proofs for FLOOD

To aid in our proofs, we define a number of functions. Unlike the functions introduced in Section
3.1, which can be computed by a process P, these functions are defined abstractly.

Dist A(P, Q) = the distance, i.e., number of hops, from P to Q.
Hq(P) ={Q : DistA(P,Q) < d}.

MinId A(P,d) = min{Q.id : Q € Hq(P)}.

Maz MinId A(P,d) = max { MinId A(Q, k) : Q € Hq(P)}.
IsClusterhead A(P) = 3Q : MinId A(Q, k) = P.id.

Dist A(P) = min { Dist A(P,Q) : IsClusterhead A(Q)}.

The similarity of the names of the abstract functions given above and the locally computable
functions given in Section 3.1 is deliberate. For example, MinIdA(P,d) is unchangeable, and is
not immediately computable by P, while MinIdF (P, d) is changeable, and is computable by P at
any time. We shall show that, eventually, the computable value of MinIdF(P,d), as well as the
variable P.minid[d], will be equal to MinldA(P,d).

Lemma 3.1 IsClusterhead A(P) if and only if MazMinIdA(P, k) = P.id.

Proof: One direction is easy: if MaxMinIdA(P,k) = P.id, then MinldA(Q,k) = P.id for some
Q € Hi(P), i.e., IsClusterhead A(P). We prove the converse by contradiction. Suppose that
IsClusterhead A(P). Pick @ such that MinIdA(Q,k) = P.id. By definition, P € Hy(Q), which
implies that Q € Hy(P).

Suppose MazMinldA(P, k) = MinldA(R,k) = S.id. If S.id > P.id, then that contradicts the
definition of MinldA(R, k), since P.id would be a better choice. If S.id < P.id, that contradicts
the definition of Maz MinlIdA(P, k), since P.id would be a better choice than S.id. Thus, S = P.
U

Lemma 3.2 Let P be a process.

(a) If at least t rounds have elapsed, then P.minid[d] = MinldA(P,d) for all 1 < d < min{t, k}.
(b) After k rounds have elapsed, Action Al is silent.

(¢) If at least t rounds have elapsed, then P.mazxminid[d] = MaxMinldA(P,d) for all 1 < d <
min {t — k, k}.

(d) After 2k rounds have elapsed, Actions A1 and A2 are silent.

(e) If at least t rounds have elapsed, then P.dist > min {t — 2k, Dist A(P)}.

(f) If at least t rounds have elapsed and Dist(P) <t — 2k — 1, then P.dist = Dist A(P).

(g) If at least t rounds have elapsed, and if Dist A(P) <t —2k — 1, then P.leader = Leader A(P)
and P.parent = ParentA(P).

Proof: We prove Part (a) by induction on ¢. Action Al is enabled to execute whenever its guard
is true, since no action has a lower priority number.

Let t = 1. MinldF(P,1) = MinldA(P,1) permanently, since both have the same definition.
P is enabled to execute Action A1(1) if P.minid[l] # MinldF(P,1). Thus, within one round,
P.minid[1] = MinId A(P,1)

Suppose t > 2. If d < t, we are done, by the inductive hypothesis. Let d = t. After ¢t — 1
rounds, by the inductive hypothesis, Q. minid[t — 1] = MinldA(Q,t — 1) for all @, and hence
MinlIdF(P,t) = MinIdA(P,t); and by the inductive hypothesis, all actions of priority numbers

10

1...d —1 are silent, and thus P is enabled to execute Action A1(d) if its guard is true. Within
one more round, P.minid[t] = MinIdA(P,t).

Part (b) follows from (a), by letting ¢t = k.

We prove Part (c) by induction on ¢.
If t < k4 1, the statement is vacuous. Suppose t = k+ 1. Then d = 1.

By (a), Q.minlk] = MinldA(Q, k) for all Q € Up after k rounds have elapsed, and thus, by
definition, Mazx MinldF(P,1) = MaxMinId A(P,1).

By (b), P is enabled to execute Action A2(1) if P.maxminid[l] # MaxMinIdF(P,1). Thus,
within one more round, P.mazminid[l] = MaxMinId A(P,1)

Suppose t > k+ 1. Without loss of generality, t < 2k. If d < t — k, we are done, by the inductive
hypothesis. Let d = t — k. By the inductive hypothesis, Q.maxmin|d — 1] = MinIdA(Q,d — 1)
for all Q € Up after t — 1 rounds have elapsed, and thus MazMinldF(P,d) = MaxMinIdA(P,d).

By (b) and by the inductive hypothesis, P is enabled to execute Action A2(d) if P.maxminid[d] #
MaxMinIdF (P, d). Thus, within one more round, P.mazminid[d] = MaxMinId A(P,d).

Part (d) follows from (c), by letting ¢ = 2k, and from Part (b).

We prove Part (e) by induction on ¢.
If t <2k or Dist A(P) = 0, we are done, since P.dist cannot be negative.

Suppose t > 2k and d = Dist(P) > 0. If d < t — 2k, we are done by the inductive hypothesis. Let
d = t—2k. After t—1 rounds have elapsed, Q.dist > d—1 for all Q € Np, and hence DistF(P) > d,
by the inductive hypothesis. By (d), P is enabled to execute Action A3 if P.dist # DistF(P).
Thus, after one more round, P.dist > d.

We prove Part (f) by induction on ¢. Let d = Dist A(P). If t = 2k + 1 and d = 0, then, by (d), P
is enabled to execute Action A3 if P.dist # DistF(P). Thus, after one more round, P.dist = 0.

Suppose t > 2k+1. If d <t —2k—1, we are done by the inductive hypothesis. Let d =t —2k—1.
Pick @ € Np such that DistA(Q) = d — 1. By the inductive hypothesis, after ¢ — 1 rounds,
Q.dist = d—1, hence DistF(P) < d; and P is enabled to execute Action A3 if P.dist # DistF'(P).
Thus, after one more round, P.dist < d. By Part (e), P.dist = d.

We prove Part (g) by induction on ¢t. Let d = Dist A(P). If t = 2k+1 and d = 0, then, by (c), after
t — 1 rounds have elapsed, Leader F(P) = Leader A(P) = P.id and ParentF(P) = ParentA(P) =
P.id, and by (d), P is enabled to execute Action A3 if its guard is true. Thus, after one more
round, P.leader = P.parent = P.id.

Lett > 2k+1. If d <t—2k—1, we are done by the inductive hypothesis. Let d =t—2k—1. Pick
Q@ € Np such that ParentA(P) = Q.id. By (f), Q.dist = d — 1 and, by the inductive hypothesis,
Q.leader = Leader A(Q) = Leader A(P) after t — 1 rounds have elapsed. We need to show that
Parent F(P) = Q.id and Leader F(P) = Q.leader after t — 1 rounds have elapsed.

If R € Np, R # @, then, by definition of ParentA(P), DistA(Q) > d — 1, and R.id > Q.id if
DistA(R) = d—1. By (e), if t — 1 rounds have elapsed, DistF(R) > d—1 and DistF(R) >d—1
if DistA(R) > d — 1, hence ParentF(P) # R. The statement of Action 3 consists of three

parts, executed in sequence. If that action is not enabled, we are done. Otherwise, after the
first part has executed, P.dist = d, by (f), and ParentA(P) = Q. After the second part has

11

executed, P.parent = Q.id and LeaderF(P) = Q.leader. After the third part has executed,
P.leader = Q.leader, and we are done. O

Theorem 3.3 FLOOD stabilizes within 3k + 1 rounds of initialization, and partitions the pro-
cesses into k-clusters. The processes of each cluster form a BFS tree, of height at most k, rooted
at the clusterhead.

Proof: For each process P, the process whose ID is Minld A(P, k) is a clusterhead, and thus P is
within £ hops of some clusterhead. Thus, by Lemma 3.2, FLOOD is silent after 3k 4+ 1 rounds.
By the definitions of Dist A, ParentA, and Leader A, and by Lemma 3.2, {P : P.leader = R.id} is
a k-cluster for any clusterhead R, and contains an internal BFS tree rooted at R defined by the
parent pointers.]

4 A Bad Case

In this subsection, we show that, in the worst case, FLOOD picks most processes to be cluster-
heads, even in the special case of a planar disk graph.

123 14 23

MR AT A A A A A A A A A A A A A AT A A A A" N
N5 %6 %6%6%0%6%6%6%6%0%6%6%6%% % %0

Figure 4.1: The Line Graph L3 3.

The Line Graph £, ,,. For any integers 1 < m < n, define £,, ,, to be the network consisting
of processes Pi,...FP,, where P;.id = i, and where P; is adjacent to P; if and only if |i — j| < m.
Figure 4.1 shows the graph L3 3. Note that £, ,, can be realized as a unit disk graph in the

line (and hence the plane), by placing each P; at the point whose coordinate is %

Lemma 4.1 Consider the k-clustering chosen by FLOOD on Ly, ., for any given n, m, and k.
Then P; is a clusterhead if and only if i < n — mk.
j—mk if j > mk

O
1 otherwise

Proof: MinldA(P;) = {

Thus, If mk < %n, most of the processes of L, ,,, will be chosen to be clusterheads by FLOOD.

5 A Lower Bound for Comparison Based Clustering Algorithms

We now show that the worst case behavior illustrated in 4 is unavoidable for any fast algorithm
that uses only comparison to distinguish IDs.

We define an algorithm for the k-clustering problem to be comparison based if the only operator
permitted on IDs is comparison. For example, the algorithm FLOOD given in this paper is
comparison based. In contrast, an algorithm that can do arithmetic on an ID, such as computing
P.id mod 2 or extracting a single bit from an P.id, is not comparison based.

Theorem 5.1 There is no comparison based deterministic distributed algorithm for the k-clus-
tering problem that takes o(diam) time, where diam is the diameter of the network, and selects
fewer than half of all processes to be clusterheads. Furthermore, there is no function of k which
is an upper bound on the competitiveness of such an algorithm.

12

Proof: Let k be given. Suppose that A is a comparison based deterministic distributed algorithm
for the k-clustering problem that takes at most » > k rounds for any network. Pick n = 4r + 2,
and let the network be L,, ;.

We start A in a configuration where all processes have the same values of their variables.
Consider an adversary which selects all enabled processes at every step. All behavior of a F;
during the first ¢ rounds is determined by the initial states of the processes in the “window”
around P; of radius ¢, i.e., {P; : |i — j| < t}. Because comparison is the only operator permitted
for IDs, the windows of radius r for all P, such that r4+1 <+¢ < n—r — 1 are indistinguishable to
A. Thus, either all those processes will be chosen to be clusterheads, or none will. Choosing none
is impossible, since the middle processes would not be in any cluster. Thus, all the processes in
that range, more than half the processes altogether, will be clusterheads.

To prove the second part, assume that A has competitiveness Cj. Let n = % + 2, and let
m = % Let the network be L, ¢, /.. Using essentially the same argument as above, we can show
that A must choose more than half the processes to be clusterheads; but the optimal k-clustering
consists of only ﬁ clusters. O

6 Conclusion

In this paper, we present a self-stabilizing asynchronous distributed algorithms for construction
of a k-dominating set, and hence a k-clustering, for a given k, for any network with unique IDs.
Our algorithm uses O(klogn) space and O(k) rounds time.

We also give a lower bound tradeoff between the time complexity and competitiveness of any
distributed algorithm for the k-clustering problem that uses only comparison to distinguish IDs.
Any such algorithm that is C-competitive for any C' < § must take Q(diam) rounds in the worst
case.

References
[1] A D Amis, R Prakash, D H, and T Vuong. Max-min d-cluster formation in wireless ad hoc networks.
In IEEE INFOCOM, pages 32—41, 2000.

[2] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the Association
of the Computing Machinery, 17:643-644, 1974.

[3] S Dolev. Self-Stabilization. The MIT Press, 2000.

[4] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election. IEEE Transactions
on Parallel and Distributed Systems, 8(4):424-440, 1997.

[6] Y Fernandess and D Malkhi. K-clustering in wireless ad hoc networks. In ACM Workshop on Principles
of Mobile Computing POMC 2002, pages 31-37, 2002.

[6] Shay Kutten and David Peleg. Fast distributed construction of small -dominating sets and applications.
J. Algorithms, 28(1):40-66, 1998.

[7] Lucia Draque Penso and Valmir C. Barbosa. A distributed algorithm to find k-dominating sets. Discrete
Applied Mathematics, 141(1-3):243-253, 2004.

[8] Vlady Ravelomanana. Distributed k-clustering algorithms for random wireless multihop networks. In
ICN (1), pages 109-116, 2005.

[9] M A Spohn and J J Garcia-Luna-Aceves. Bounded-distance multi-clusterhead formation in wireless ad
hoc networks. Ad Hoc Networks, 5:504-530, 2004.

13

