
AN EMPIRICAL INVESTIGATION INTO THE TRANSITIONAL FRICTION OF BLOCK-BASED

PROGRAMMING LANGUAGES

By

Alex Hoffman

Bachelor of Science in Computer Science
Hardin Simmons University

2000

Master of Business Administration
University of Nevada, Las Vegas

2018

A dissertation submitted in partial fulfillment of

the requirements for the

Doctor of Philosophy – Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2024

© Alex Hoffman, 2024

All Rights Reserved

ii

Dissertation Approval

The Graduate College
The University of Nevada, Las Vegas

April 11, 2024

This dissertation prepared by

Alex Hoffman

entitled

An Empirical Investigation into the Transitional Friction of Block-Based Programming
Languages

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy – Computer Science
Department of Computer Science

Andreas Stefik, Ph.D. Alyssa Crittenden, Ph.D.
Examination Committee Chair Vice Provost for Graduate Education &

 Dean of the Graduate College
Hal Berghel, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Examination Committee Member

Fatma Nasoz, Ph.D.
Examination Committee Member

Gregory Moody, Ph.D.
Graduate College Faculty Representative

Abstract

Computers are ubiquitous in our lives, so skilled workers are needed to create the software these devices

require to operate. Computer science education, and more broadly, computational thinking are critical to

sustaining innovation and economic growth. Much of the research on early computer science education

focuses on block-based programming languages, a subset of visual programming languages. The intent

behind block languages is to provide novices an introduction into computer science principles and pro-

gramming in general, but there is a longstanding issue with learners’ transitional friction from block-based

languages to the more professionally used text-based languages. This makes the current use of block

languages predominantly narrow in scope: teaching just the basics of programming. Barring the rare ex-

ceptions of using block languages for a full course, most pedagogy utilizes block-based programming for a

matter of mere weeks before transitioning to text-based languages. Students initially learning with block

modalities typically learn programming fundamentals faster than those who start with text modalities,

but the differences tend to level off after the block-based learners transition to text-based programs, which

calls into question the benefits of starting in blocks. This transitional friction from block languages to text

languages arguably hinders the educational scaffolding required to develop students into professionals, so

addressing the sources of this friction is paramount to the educational process.

The first original empirical study is an investigation into the interaction of visual attributes of block-

based programming languages, which could help or hinder a programmer’s ability to read the program’s

code. The techniques were applied in a study of 30 professional programmers and 57 students from the

University of Nevada, Las Vegas for a total of 87 participants across four treatment groups. In that first

iii

empirical study, we were able to quantitatively determine that colors and color categorization are beneficial

for both novices and professionals. We recommend to have block-based programming environments employ

a left-margin aligned programming interface with even spacing instead of an open palette. Distinct block

shapes appear to be beneficial, although more testing is needed to determine what shapes make most sense.

Adding the capability to have comments and line numbers would be beneficial for novices and professionals

alike. This analysis lends itself to ongoing development on existing block languages to ease current learners’

transition from block languages to text languages.

The second original empirical study is an investigation into the features and functionality, or tools, of an

integrated development environment (IDE) for a block-based language. The study particularly focuses on

what an IDE needs to have available for developers to be able to perform adequately as well as what types

of context-aware capabilities an IDE could have to accelerate development practices. The study consisted

of 21 professional programmers and 102 students from the University of Nevada, Las Vegas for a total of

123 participants, all of whom were in a single group, and we analyzed their responses both together and

per experience group. The results indicate that a context-aware IDE for a block-based language would

be beneficial; thus, we recommend different sets of tools depending on the programming scenario. One

important finding is that, regardless of scenario, developers consistently rated example code as one of the

most helpful tools. We began the investigation hypothesizing that novices and professionals might have

very different needs. After our survey, however, we noted far more overlap than we expected in terms

of the type of information that both groups claimed were helpful. The key contribution of this research

project is to investigate the initial key components of a block-based language and accompanying IDE that

could scale in utilization from very young learners up through to professional programming activities. If

such a language and environment existed, it might reduce the transitional friction between products that

the community thought were only for children to those we presume might be only for professionals.

iv

Acknowledgements

First, I thank my committee for their guidance and effort in helping me achieve this goal. I express my

deepest appreciation and gratitude for my advisor, Dr. Andreas Stefik. Many times throughout this

process, I felt like you were my only hope to complete this journey. Anytime I felt that it was impossible,

your support helped me stay on target. Your work inspires me to be better, both as a researcher and

a human. I look forward to continuing this research journey together. I thank Dr. Hal Berghel, who

provided me the initial spark of excitement for research even before I started this journey and for providing

a shining example of a life well-lived in service of educating others. I thank Dr. Laxmi Gewali for his

all his wisdom, encouragement, and everything he does for the CS department at UNLV. I send a special

thanks to Dr. Fatma Nasoz who advised and supported me throughout the years despite the pandemic and

circumstance preventing us from working directly together; hopefully we can collaborate in my next phase.

Finally, I express my sincerest thanks and appreciation to Dr. Greg Moody, who has advised, supported,

and educated me since my masters degree. I appreciate you being there for me all of these years, and I

hope to continue working together throughout our careers.

In addition, I thank Dr. Sidkazem Taghva for the vote of confidence in allowing me to teach classes

in the CS department for so many years. To Dr. Nadine Bentis and Leith Martin, I extend my deepest

appreciation for all the support you provided me in this journey; I am eternally grateful. Thank you to

the rest of the UNLV CS, MIS, MBA, and Finance professors from whom I learned so much, and thank

you to Dr. Paul LaPlante and Dr. Benjamin Cisneros who supported my research.

Thank you to all my friends and peers who helped me achieve this goal. Starr, life is weird; thank you

v

for supporting me even though it was no longer an expectation, which in my opinion just makes it all the

more real. Thank you for your heartfelt counsel, reaching out to help, and giving good advice. Hannah,

thank you for your insight, feedback, and encouragement. You have the makings of being a world-changing

researcher; I look forward to working with you for many years to come. To my lab-mates, fellow PhD

students, co-instructors, and peers who toiled with me in this journey, thank you for the commiseration

and camaraderie. I learned and grew from each of you. Jared, James, Alexey, Bryce, Mana, Tihleigh,

John, Mariela, and of all my other friends around the globe, your words of encouragement and support

have kept me going.

“Your focus determines your reality” – Qui-Gon Jinn

“So long, and thanks for all the fish” – Douglas Adams

Alex Hoffman

University of Nevada, Las Vegas

May 2024

vi

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 6

1.3 Contributions . 6

1.3.1 Summary of Results . 7

Chapter 2 Review of Literature 9

2.1 Overview . 9

2.2 Literature Distribution . 9

2.3 Visual Programming Languages . 10

2.4 What Are Block-Based Programming Languages? . 12

2.5 Why Block Languages? . 14

2.6 Challenges with Blocks . 16

2.6.1 Self-Efficacy & Learning . 16

2.6.2 Accessibility . 17

2.7 Transitioning from Blocks to Text . 17

vii

2.8 Computational Thinking . 19

2.9 Blocks for Educating Educators . 20

2.10 Blocks Beyond Formal Education . 20

2.11 Professional Software Engineers . 21

2.12 The State of Block Editors and IDEs . 22

Chapter 3 Study 1: Assessing Visual Attributes’ Role in Readability and Comprehension

of Block-Based Programs 24

3.1 Methods . 24

3.1.1 Hypotheses . 24

3.1.2 Inclusion and Exclusion . 25

3.1.3 Participant Characteristics . 25

3.1.4 Sampling Procedures . 25

3.1.5 Sample Size, Power, and Precision . 25

3.1.6 Measures and Covariates . 26

3.1.7 Data Collection . 27

3.1.8 Quality of Measurements . 27

3.1.9 Instrumentation . 28

3.1.10 Masking . 29

3.1.11 Psychometrics . 30

3.1.12 Random Assignment Method . 30

3.1.13 Random Assignment Implementation and Concealment 30

3.1.14 Data Diagnostics . 30

3.1.15 Analytic Strategy . 31

3.2 Results . 31

3.2.1 Participant Flow . 31

3.2.2 Recruitment . 31

3.2.3 Statistics and Data Analysis . 32

3.2.4 Timing and Correctness . 42

3.3 Discussion . 45

3.3.1 Support of Original Hypotheses . 45

viii

3.3.2 Hypothesis 1 . 45

3.3.3 Hypothesis 2 . 47

3.3.4 Hypothesis 3 . 47

3.3.5 Hypothesis 4 . 48

3.3.6 Similarity of Results . 48

3.3.7 Interpretation . 48

3.3.8 Generalizability . 49

3.3.9 Implications . 50

Chapter 4 Study 2: Investigating a Context-Aware Palette for a Block-Based Language 51

4.1 Background . 51

4.2 Methods . 52

4.2.1 Hypotheses . 52

4.2.2 Inclusion and Exclusion . 52

4.2.3 Participant Characteristics . 53

4.2.4 Sampling Procedures . 53

4.2.5 Sample Size, Power, and Precision . 54

4.2.6 Measures and Covariates . 54

4.2.7 Data Collection . 55

4.2.8 Quality of Measurements . 55

4.2.9 Instrumentation . 56

4.2.10 Masking . 57

4.2.11 Psychometrics . 57

4.2.12 Participant Selection . 58

4.2.13 Data Diagnostics . 58

4.2.14 Analytic Strategy . 58

4.3 Results . 59

4.3.1 Participant Flow . 59

4.3.2 Recruitment . 61

4.3.3 Statistics and Data Analysis . 61

4.4 Discussion . 77

ix

4.4.1 Support of Original Hypotheses . 77

4.4.2 Hypothesis 1 . 77

4.4.3 Hypothesis 2 . 79

4.4.4 Hypothesis 3 . 80

4.4.5 Similarity of Results . 81

4.4.6 Interpretation . 81

4.4.7 Generalizability . 92

4.4.8 Implications . 92

4.4.9 Limitations . 93

Chapter 5 Conclusion 94

5.1 Discussion of Research Questions . 94

5.1.1 RQ 1 . 94

5.1.2 RQ 2 . 95

5.1.3 RQ 3 . 96

5.2 Future Research . 99

Appendix A Survey Instrument 1 101

Appendix B Survey Instrument 2 199

Bibliography 214

Curriculum Vitae 228

x

List of Tables

3.1 Groups . 26

3.2 Attributes Assessed . 27

3.3 Group Attributes . 29

3.4 Participants . 32

3.5 Task Correctness Between Professionals and Novices . 45

4.1 Participants . 53

4.2 IDE Potential Types of Tools . 55

4.3 Question 1: Use Statement Means/SD . 62

4.4 Question 2: Syntax Error Means/SD . 65

4.5 Question 3: If Statement Means/SD . 68

4.6 Question 4: Add Function Means/SD . 71

4.7 Question 5: Create Dataframe Means/SD . 74

4.8 Question 6: Chart Display Means/SD . 76

4.9 Count of Times Each Tool Ranks in the Top or Bottom Tools Across All Scenarios 81

4.10 Sum of the Means . 82

4.11 Tool Median Weight Greater Than Zero . 82

xi

List of Figures

2.1 Research By Group . 10

2.2 Glinert’s Blox, an Early Visual Programming Language [1] 11

2.3 Scratch, a Block-Based Programming Language Designed for Children [2] 12

2.4 Blockly, Google’s Block-Based Programming Language [3] 13

3.1 Colorful, In-line, Vertical Scroll . 28

3.2 Grayscale, Dispersed, Horizontal Scroll . 29

3.3 Block Color: Color Attribute Rating by Group and Experience 33

3.4 Shape of the Blocks: Block Shape Attribute Rating by Group and Experience 35

3.5 Arrangement of the Blocks: Block Arrangement Attribute Rating by Group and Experience 37

3.6 Scrolling Direction: Scroll Direction Attribute Rating by Group and Experience 38

3.7 Text, Punctuation, & Symbols: Text, Punctuation, & Symbols Attribute Rating by Group

and Experience . 39

3.8 Lack of Comments: Lack of Comments Attribute Rating by Group and Experience 40

3.9 Lack of Line Numbers: Lack of Line Numbers Attribute Rating by Group and Experience . 41

3.10 Spacing: Block Spacing Attribute Rating by Group and Experience 43

3.11 Dropdown Arrow: Dropdown Arrow Attribute Rating by Group and Experience 44

3.12 Task Timing by Group: Duration per Task by Group and Experience 46

4.1 Categorization and Rank Questions . 56

4.2 Tufte Box Plot Example . 60

4.3 Question 1: Which Tools Would Be Helpful? . 62

4.4 Question 1: Code Snippet Displayed to Participant . 64

4.5 Question 1: Potential Partial Palette Based on Weights . 64

xii

4.6 Question 2: Which Tools Would Be Helpful? . 65

4.7 Question 2: Code Snippet Displayed to Participant . 67

4.8 Question 2: Potential Partial Palette Based on Weights . 67

4.9 Question 3: Which Tools Would Be Helpful? . 68

4.10 Question 3: Code Snippet Displayed to Participant . 70

4.11 Question 3: Potential Partial Palette Based on Weights . 70

4.12 Question 4: Which Tools Would be Helpful? . 71

4.13 Question 4: Code Snippet Displayed to Participant . 73

4.14 Question 4: Potential Partial Palette Based on Weights . 73

4.15 Question 5: Which Tools Would be Helpful? . 74

4.16 Question 5: Code Snippet Displayed to Participant . 75

4.17 Question 5: Potential Partial Palette Based on Weights . 75

4.18 Question 6: Which Tools Would be Helpful? . 76

4.19 Question 6: Code Snippet Displayed to Participant . 78

4.20 Question 6: Potential Partial Palette Based on Weights . 78

4.21 Recommended Palette: Empty File . 87

4.22 Recommended Palette: Editing a Script Without Imported Libraries 88

4.23 Recommended Palette: Editing a Script With Imported Libraries 89

4.24 Recommended Palette: Editing a Class . 90

4.25 Recommended Palette: Error in the Code . 91

xiii

Chapter 1

Introduction

1.1 Motivation

Computers are ubiquitous in our lives, from devices we recognize as computers to the mobile computers

we carry in our hands and pockets all the way down to all of our smart devices like thermostats, light

switches, and even range hoods. This proliferation of computing devices requires skilled workers to create

the software these devices require to operate. A 2021 “Beyond the Numbers” report by the U.S. Bureau

of Labor Statistics [4] states that from 2019 to 2029 computer occupations in aggregate are projected to

experience growth of 11.5%, about three times the average rate of job growth. Jobs for software developers

are projected to grow 21.5%, computer and information research scientists are projected to grow at 15.4%,

and a group that comprises of data scientists is experiencing explosive growth of 26.5%, albeit from a

smaller starting pool of jobs. These in turn will generate around a half of a million new jobs by 2029 on

top of the existing labor needs, which is only growing as people retire and transition out of the field. This

clearly demonstrates a need for education and training to fill these new openings. According to the NSF

2022 state of science and engineering report [5], science and engineering degrees account for 27% of degrees

awarded, and bachelor’s degrees account for nearly 70% of all science and engineering degrees awarded,

which most of these were in agricultural, biological, or social sciences. Science and engineering master’s

degrees increased the most in computer sciences and engineering, mostly driven by foreign students on

visas. The report goes on to say the “performance of U.S. K–12 students in STEM has been stagnant” as

measured by a lack of improvement in mathematics test scores for all students over more than a decade

while scores for underrepresented minorities lag behind white and Asian students. Thus, the report argues,

1

the U.S. labor force for STEM jobs currently relies upon foreign talent.

There are many factors that contribute to, or prevent, students matriculating into and successfully

completing STEM education in their university studies. Some scholars question the belief that there is

a shortage of STEM workers [6, 7]; however, the aforementioned NSF report highlights demographic,

socioeconomic, and geographic disparities in education and performance at the K–12 level for STEM

education. A contributing factor is that K–12 educators often have little experience in STEM [8], especially

in schools at the lower end of the socioeconomic strata and with high populations of minority students [5].

Programming is challenging for K–12 students to learn, especially when their teachers do not have a

solid grounding in the concepts they are meant to teach. With teachers themselves having not learned

computational thinking nor computing concepts in their formative years, it is difficult to expect them to

obtain this knowledge from an undergraduate program designed to educate them how to broadly teach.

Thus, these educators themselves become adult novices in programming and are expected to learn how to

program, decipher which visual and text-based languages should be used for their instruction, and design

courses to teach students how to program while guiding them through this transition from blocks to text

languages. With the proliferation of both text-based and block-based languages only being outstripped by

the proliferation of opinions about programming languages, it is a heavy ask of our K–12 teachers.

How to increase student matriculation into university-level STEM programs is a multi-pronged problem

that requires many solutions from a diverse set of researchers. Some part of the solution includes the

approaches and programming languages for teaching computer science. Weintrop and Wilensky [9] conclude

that programming tool creators and educators will need to work together to facilitate solving this problem.

Papert was interested solving similar issues around computer science education; he created the Logo

programming language [10] to help children relate mathematical concepts to their experiences and interests,

which reinforced his constructionist educational philosophy [11]. Martin and Resnick expanded upon this

work by creating LEGO/Logo to scaffold upon Papert’s constructionist, activity-oriented pedagogy [12].

The intent was for students to actively participate in their scientific development, which enabled them

to learn how to think critically and systematically about problem solving. These pedagogical theories

led these researchers to create these early visual languages to help students learn STEM concepts. Papert

coined a term in his seminal work [10] for this, computational thinking, which is an apt term popularized by

Wing [13] and now used throughout the research literature as a universal approach to solving problems. Its

two main progenitors, Wing and Papert, conceptualized computational thinking from two different angles—

respectively, thinking like a computer scientist regardless of profession and the result of constructionist

2

educational pedagogy that focuses on affective and social implications of computing.

Visual programming languages employ graphical elements, rather than solely text, to enable people

to create programs. These graphical elements abstract away implementation details and syntax while

allowing users to directly interact with the elements via a drag-and-drop interface from a menu onto an

editing palette. These, in turn, allow people to create programs with arguably more visual scaffolding that

might reduce some of the complexity of text-based languages. Most visual programming languages can

be classified into one of four primary categories: form-based, diagram-based, icon-based, and block-based

languages [14].

Block-based programming is receiving a growing amount of attention in the research literature and in

classrooms due to the typical focus of using these languages for educational purposes. The intent behind

block-based programming languages is to provide learners an introduction into computer science principles

and programming in general, with the visual representation being easier to understand than text-based

programming languages [15]. These languages typically employ bright colors, sprites (two-dimensional

bitmap), sounds, and a heavy emphasis on actions to get children engaged into the idea of programming

their own game. While these features make block languages playful and engaging, they lend to the critique

of later-stage learners that block languages are too simplistic for all the possibilities of programming, even

if they are unsure what those possibilities may be [16]. The primary question that is yet to be answered

in the research literature is if block languages are better than text-based languages at teaching students

programming concepts and, thus, fulfilling the future needs for professional computer occupations.

Unfortunately, this seems to have not yet borne out in the research. While many researchers seem to be

trying to answer that question, it needs to be considered if the limited nature of block-based programming,

and thus the limited duration of teaching computer science using these languages, prevents the deeper

learning necessary to truly understand programming concepts in depth. In much of the research literature,

studies are performed where block-based programming is used for a matter of mere weeks [2] [17] [18] [19].

While there are some rare exceptions of using block languages for a full course [20], block languages tend

to not be used to teach multiple semesters nor for more advanced concepts, which may in turn hamper the

scaffolding process, given the loss of the cumulative effect of time practicing writing in this modality [21].

Might this lack of depth and duration have contributed to the limited benefit currently seen with block-

based languages?

Additionally, few programming languages, whether block-based or text-based, are accessible to people

with disabilities, which may contribute to students with disabilities feeling uncomfortable with majoring

3

in computer science [22]. Ensuring these students are able to access the same learning opportunities as

their peers is not just federal law. It is also how we ensure diverse perspectives are brought into computing

fields, which in turn may help prevent computationally-reinforced societal decline from impactful vectors

such as AI bias [23, 24].

Many computer science programs at the university level move from basic programming concepts in the

first semester and then proceed to object-oriented programming, data structures, algorithms, and beyond

in subsequent semesters. In order for block languages to be used, and effective, to scaffold the learning

beyond the introduction of the basic introductory course, they would need to be capable of handling

the complexities of teaching these concepts. Garcia et al. [25] created Block4DS to help address these

deficiencies, and some preliminary findings were positive [26]. While they found no significant difference

between learning outcomes between students who learned data structures with text-based or block-based

modalities, all students had prior working knowledge of text-based programming yet none had experienced

block-based languages prior to that course. This suggests that a thoughtfully constructed, scalable block-

based language might be effective throughout a computer science program. Interestingly, in that study,

female and English as a second language (ESL) students reported preferring the block-based language over

text-based pseudocode. The primary deficiency of the study is it compared the instruction method—video

based instruction given with pseudocode vs in the block language—via a concept-based pre- and post-

test without students actually writing code in either modality, which may have impacted any potentially

positive writing-to-learn effects [21].

Brennan et al. performed a study of existing Scratch projects from long-term Scratch programmers, and

although these projects initially indicated student fluency as evidenced by existing computational concepts

in the code, interviews revealed that students’ descriptions sometimes demonstrated significant conceptual

gaps, since they borrowed code from other projects and could not explain how the code worked [27]. This

effectively demonstrates the need for a curriculum that can scaffold learning experiences with algorithmic

computational problem solving to provide a strong foundation for success in future programming expe-

riences [28], and part of that may be having the proper block languages to take learners through more

than just the first few weeks of their programming courses. While there is an issue with the transfer of

learning at this stage, it is not yet known why this occurs. Bangert-Drowns et al. [21] posit that there may

be interference with the learning and writing relationship when students transition to new subject-specific

writing forms in general education, which could potentially equate to transitioning from block-based to

text-based modalities in programming. It could also be that the complexity of the curriculum at the stage

4

where the transition occurs is so low that the starting modality would never have an effect.

Despite Whitley and Blackwell’s findings that professionals expect visual programming languages to

be less powerful, less readable, and less enjoyable to use than text-based languages [29], today there are

professionally-used programming languages that use visualization in some form, which indicates that it

is possible to entice professional programmers to use visual programming. For example, Unreal engine

employs Blueprints [30], which is a highly visual programming environment, albeit different from blocks, as

a primary programming modality. It is an interesting point to consider what makes some visual languages

acceptable or unacceptable in the eyes of professional programmers. Is it purely based on stigma or

popularity, or is it more based on the capabilities and attributes of each language?

The perspectives and opinions of software developers matter significantly in research about software

engineering [31], but while studies have been done with professionals using visual programming [32] [29] [33],

there is scant research specifically on block languages used by professionals. The experience and knowledge

of software practitioners is crucial to validate assumptions and evaluate the tools, techniques, and methods

software engineers utilize, and we know professional programmers do use visual programming languages.

Thus, the research should assess how professionals evaluate the tools, techniques, and methods used to

train the future generation of computer specialists. This could potentially generate the next generation

of block languages that could be beneficial beyond the first few weeks of programming education, which

could potentially be scaled to use broadly in professional programming contexts.

A radical concept to consider is if it would be possible to have a single programming language to cover

programming needs from educational inception through a professional career. Much of the research about

block languages revolves around the challenges of transitioning learners from block-based to text-based

languages. If such a language could be devised that is as instructional for young learners as it is powerful

for sophisticated computer scientists, then that transitional friction could be erased since that modality

switch would no longer occur. Additionally, students would experience the positive effects of writing-to-

learn over a longer period of time to accumulate more depth of experience. With this in mind, we should

endeavor to discover what attributes of visual programming languages professionals find to be beneficial

versus detrimental.

Could investing in introducing more powerful capabilities in block languages help them be used in subse-

quent courses and potentially used in professional development? What aspects of block-based programming

might be beneficial to professionals, and by breaking down any barriers to using block languages, could

we see professionals begin to adopt block-based programming at scale? In the first study, we address how

5

the visual attributes of block-based languages are perceived by professional programmers and computer

science students alike. These attributes may enhance or deter student learning outcomes. Likewise, they

may contribute to how professional programmers perceive a language’s capability and usefulness in their

own projects. In the second study, we investigate how a structured IDE might improve the usefulness of a

block-based programming environment. Factors we analyze include the context-aware suggestions for what

types of blocks and structures to present to the user, error detection, error alerts, context-sensitive sug-

gestions for variable use, and determining the prominence of displaying links to documentation. With the

results of these studies, we can make a recommendation how to design a future block-based programming

environment.

1.2 Research Questions

With the importance of this topic and the breadth of application, there are a multitude of potential research

questions. Within the scope of this study, the broad research questions we plan to study are as follows:

1. What attributes of block programming languages and environments do professionals find to be ben-

eficial versus detrimental?

2. What aspects of block-based programming might be beneficial to both learners and professionals?

3. What capabilities could be added to a block language and environment to ease the transitional friction

for learners to become professionals?

1.3 Contributions

In the first study in chapter 3, we present the results of how professional software developers perceive

attributes of block languages to determine which visual attributes are helpful versus harmful. We then

compare these measurements to results we obtained from a pool of university level computer science

students. These results in turn provide insights into what similarities and differences there are between

the two groups: professionals and learners. A total of 87 participants took part in the entire study: 30

professionals and 57 learners. In the study we presented a small program to participants to have them

solve a programming question on a read-only basis. After each problem, we collected Likert scaled feedback

about how each visual attribute helped or harmed the participant’s ability to solve the problem.

6

The survey instrument displayed a small program that was syntactically the same for all participants,

but the visual attributes were varied. When a participant was assigned to a particular set of attributes, they

were then given the same attributes for all questions in the survey. The motive of varying the attributes was

to be able to test how certain primary attributes affected the participants’ perceptions of block languages

in general. Particularly, we aimed to see how altering the color and layout of the small program affected

the participants’ perception of an array of attributes. We also aimed to determine if non-code helpers, such

as line numbers and comments, were perceived as beneficial even to small, simple programs. The results

of the survey were analyzed quantitatively.

In the second study in chapter 4, we analyzed potential context-aware capabilities of an integrated

development environment (IDE) for a block-based language. In particular, we sought to discover how such

an IDE could be context-aware enough to provide helpful suggestions and insights when programming.

We compared the results of professional programmers’ opinions with university level computer science

students. A total of 123 participants completed the study: 21 professionals and 102 novices. In this study,

we presented several different scenarios where the participant was asked to imagine a specific programming

challenge. The participant was given a small snippet of code and an indicator where the cursor was and then

asked to categorize 16 tools into helpful versus not helpful, for that specific scenario. Then the participant

was asked to rank the helpful items from most helpful, next most helpful, and on down the line.

The survey instrument displayed the same questions to all participants without any changes or varia-

tions. The intent of the single-group design was to determine if there was any preferential deviation between

tools and if there was a difference in tool preferences between professionals and novices. Specifically, we

aimed to find if some tools are broadly more important than other tools, if certain tools are more important

in various scenarios, and if professionals and novices view the tools’ usefulness differently. The results of

the study were analyzed quantitatively.

1.3.1 Summary of Results

The first study quantifies what visual attributes professionals and learners stated to be helpful or harmful

for completing tasks. Results show that colors and color categorization are beneficial for both learners

and professionals. Color is beneficial for people without visual impairment and is critical to assess for

those with visual impairment. Determining how to use colors and categorize colors would be a beneficial

step forward for a future work. When analyzing the results of a horizontal, dispersed block layout, this

format is shown to be harmful to understanding for learners and professionals. The evidence shows that

7

allowing blocks to be randomly placed on the palette, thus forcing horizontal scroll, is detrimental to both

learners and professionals. Distinctive block shapes were beneficial to task completion across the board for

learners, but results were split for professionals. While we do not have significant measures of correctness,

the benefits of block shapes were circumspect for professionals. This attribute needs to be studied further,

especially considering how it could impact visually impaired learners. Results additionally show that the

lack of comments and line numbers are harmful for both learners and professionals alike. The evidence

demonstrates that both groups would find the ability to include comments and reference line numbers to

be beneficial.

The second study quantifies what individual tools, or features, professionals and novices found to

be beneficial in various scenarios. Professionals and novices categorized and ranked tools similarly, so

there was no significant difference in experience groups. Results show that there are some tools, such as

“Example Code,” that are beneficial in a broad range of programming scenarios, while other tools, like

“Source Control,” are not as beneficial to have in the IDE. Other tools are beneficial to display consistently,

such as “Blocks for Conditionals” or “Blocks for Controls,” whereas there are some specific use case tools,

like “Blocks to Import Additional Libraries” that appear to provide little benefit. Overall, the results

indicate that a context-aware palette of tools appears to be a beneficial addition to a block-based IDE. As

discussed with Laxmi Gewali [34], this dissertation is at the intersection of computer science education,

human computer interaction, and programming languages.

8

Chapter 2

Review of Literature

2.1 Overview

The goal of this review is to investigate the role of block-based programming languages in computer

science education, particularly how transitional friction plays a part of reducing the value of starting the

early educational stages in block languages instead of text. We provide an overview of the history of

block languages and they fit into the landscape of visual programming languages. A review of benefits and

drawbacks to block languages examines why block languages are utilized, albeit on a limited basis. Through

this review, we discover that important groups are underrepresented in the research about block languages:

people with disabilities as a whole, adults who only need to perform ad-hoc programming activities, K–12

teachers (who need educating on computer science fundamentals), and professional programmers.

2.2 Literature Distribution

For this research, we analyzed 403 research papers on visual programming languages. From that, we

categorized a sampling of 141 research papers related to block-based programming, with the primary goal

being to find gaps in the research where certain groups have been under-studied. Additionally, we wanted

to determine which visual elements of block-based programming help or hinder use. While this review is

not comprehensive of every research paper about block-based programming, it does cover a broad swath of

the current literature. Papers were chosen for classification by choosing a sampling of these top 403 most

relevant articles from the ACM’s, IEEE’s, and ScienceDirect’s digital libraries. We classified the papers in

figure 2.1 across age-experience groups: K–12 students, university students, adult novices, computer science

9

Figure 2.1: Research By Group

Adult Novice Educator K−12 None Professional University

Research by Group

Group

P
u

b
lic

a
ti
o
n
s

0
2
0

4
0

6
0

8
0

1
0

0
1

2
0

educators, professional software engineers, and a “none” category, which typically meant it presented a new

block-based tool without additional research done on it. With this classification, we found that 77.3% of

papers studied the effects of block-based languages on K–12 student participants, whereas 8.5% of research

was conducted with university students as subjects, and there were no papers that performed any type of

block-based programming research on industry-level computer scientists.

Additionally, less than 3% were conducted on adult novices and 6.3% with educators as the participants

of the study. If we are to ensure that everyone has access to computational fields, we need to ensure we

understand how adults can be better served by block-based languages, whether they are learning to program

for themselves or they are educators who are planning to teach our students. Thus, the research body should

be expanded to quantify the teaching and learning capabilities that block-based languages afford or deter.

2.3 Visual Programming Languages

The true roots of visual programming languages are debated. While some consider the first visual lan-

guages to have started in the 1980s with Pict [35], Blox 2.2 [1], LabVIEW [36], and Logo [10], which is

purely text-based with visual components, others [37, 38] go back as far as Jackson’s [39] work on visual

structured programming or Sutherland’s [40] dissertation work on a graphical associative programming

10

Figure 2.2: Glinert’s Blox, an Early Visual Programming Language [1]

language in 1966 as the original, albeit rudimentary, visual programming languages. Logo, which was

started in the 1960s [41], long before adding visual components, is the progenitor of over 300 program-

ming languages [42], many of which are visual languages such as Scratch 2.3 and LogoBlocks, a true

visual programming implementation of Logo [43]. Myers [44] asserted that visual languages include flow

charts or graphical languages that are processed in multi-dimensions, not in a one-dimensional stream like

conventional text-based languages.

With humans being so highly visual [45], it comes as no surprise that visual languages have been in

development and use for so long. Visual programming languages attempt to convert the complexity of

programming syntax to a graphical representation. This visual element serves multiple purposes; at a

minimum they act as a memory aid, simplify complex character sequences into something more intelligible,

and provide a more appealing layout. Arguably, visual languages are more approachable to first-time

learners; unfortunately, this visual representation is not easier for everyone. It is understandable, although

not excusable, that people who are blind or low-vision are often not considered in the context of using

visual languages. While that is in progress of changing [46, 47, 48], these tools have not yet penetrated the

list of top educational programming languages.

Visual programming language implementations run the gamut of education [49, 50], robotics [51], video

game development [30, 52], and, more specifically, block-based programming languages have been created

for specialty concepts such as robotics [53], data science [54, 55], Internet of Things (IoT) [56], to aid in

computational thinking in archival science [57], parallel programming [58, 59], notebooks [60], and IDE-

like workbenches [61] for block languages. Visual programming languages can be classified into one of four

primary categories: form-based, diagram-based, icon-based, and block-based languages [14].

11

Figure 2.3: Scratch, a Block-Based Programming Language Designed for Children [2]

2.4 What Are Block-Based Programming Languages?

Block-based programming languages are a subset of visual programming languages. Block languages use

a puzzle-piece metaphor approach to programming [2]; blocks are similar to puzzle pieces in that they

can interlock with each other to create programs. In these environments, users drag-and-drop blocks

that represent program components, such as variables, conditions, expressions, and statements, onto an

editing palette. Some languages only allow blocks to be interlocked vertically, some only allow horizontal

interlocking, and many employ both vertical and horizontal interlocking to construct program syntax.

These blocks help to show semantic groupings of code, such as nesting a group of commands inside of a

while loop. Some of these languages allow multiple grouping of blocks disaggregated from each other, while

others require all blocks to be connected. Many block-based languages tend to not require left-alignment

to a margin as a text-based programming language would in a traditional IDE. This means blocks could

be dispersed on various parts of the canvas, called spatial layout, which potentially would allow more code

to be seen on a single screen. Blocks could be broken into logical chunks, such as functions or imports,

and placed horizontally as desired. This would affect both the potential scrolling directions on the canvas

and how the blocks can be arranged. It is often unclear how programs will execute when the disconnected

12

Figure 2.4: Blockly, Google’s Block-Based Programming Language [3]

blocks are dispersed across the canvas, and each language implementation seems to have its own way of

dealing with that layout.

Visual cues, like color and shape of the blocks, help provide guidance on how the blocks can be snapped

together to form a logical grouping. Blocks that can interlock together usually will “magnetically snap” in

place with each other to ease construction of programmatic phrases. This also means blocks that cannot

interlock cannot be accidentally put in a place that would make the code syntactically invalid. The envi-

ronment prevents any groupings that are syntactically invalid. Some block languages only minimally allow

typing, limiting it to just filling in the blanks where variable names and numerical and string literals go,

whereas others allow for broader use of the keyboard to provide more input flexibility to the programmer.

Utilizing blocks removes the need for complex syntactic elements, such as parentheses, braces, and semi-

colons to delineate code sections. Together, these arguably diminish syntactical precision as a barrier to

programming [62].

These environments share characteristics that are thought to aid in learning programming. In many

environments targeting children, programmers can create games, stories, and art with highly colorful blocks

that focus around actions like movement and playing sounds. Several distinguishing features of block

languages comprise of palette of commonly-used blocks for easy access and recall, using colors and shapes

to delineate programmatic concepts and placement, and employing natural-language descriptions of the

block’s purpose rather than esoteric syntax. Design decisions were made throughout the process of creating

these languages, which should be evaluated to determine if they are beneficial or helpful, such as the limited

palette of blocks, horizontal scrolling, colors that in some cases do not meet WCAG guidelines [63], access

13

to documentation, and more. Even with historically mixed evidence for and against visual programming

languages [29, 64, 65, 32], they have proliferated. A small selection of currently successful block languages

include Scratch [49], Snap! [66], Alice [50], Blockly 2.4 [67], AppLab by Code.org [68], Makecode [69], and

Quorum [47].

The Scratch programming language is a seminal work among block-based languages. Resnik et al. [49]

state that digital fluency requires “not just the ability to chat, browse, and interact but also the ability

to design, create, and invent with new media,” which requires learning some type of programming. They

state that mastering programming is difficult because programming is often introduced with activities

that are not connected to someone’s interest or experience, as well as in contexts where novices could not

get guidance when things go wrong, nor encouragement to dive deeper when things are working. Papert

discusses the concepts of low floor, high ceiling, and wide walls [10]. He defines a low floor as the ease of

starting to work with a new technology, while a high ceiling provides for increased sophistication over time.

Wide walls is defined as encompassing as many use-cases as possible. Across the literature, core concerns

are to make Scratch tinkerable, meaningful, and social, which some term as “breadth,” or range of distinct

features used, and “depth,” which they define as the amount of features that are used [70]. In teaching

students scientific concepts with LEGO/Logo, Martin and Resnick [12] equated this type of student learning

to being both scientists and inventors. Students learned how things are by creating and testing theories

while simultaneously learning how things could be by creating new programs and brick-constructions.

2.5 Why Block Languages?

The research literature demonstrates that students without prior programming experience are at a reduced

likelihood of being successful in completing computing courses, and it is especially true for female students

and those from underrepresented groups [71, 72, 73, 74], which often causes high dropout rates in the

first course for these students. Bui et al. [75] found that students without prior experience who persist

through introductory computer science (CS1) courses go on to experience performance gaps in second

level computer science (CS2) courses, which in turn has a knock on effect for lower performance in upper

level courses [76], again affecting underrepresented groups and females to a higher degree. Bui et al. [75]

discover there is no difference in CS1 and CS2 performance between students with formal or informal prior

experience in programming as long as there was some experience prior to entering CS1, so the critical factor

is ensuring all students, especially those in less advantaged demographics, get experience in computing and

14

programming prior to entering computer science programs.

There is a growing body of research discussing how novices, especially in K–12, can best begin learning to

program using block-based languages [77, 50, 78, 79, 80]. These languages are intended to entice students

to experiment and play as a method of learning programming skills and computational thinking. It is

thought that block-based programming makes it easier for novices to begin programming due to visual

cues, mitigating syntax errors, presenting the available set of commands, removing typing challenges, and

the use of natural language. Maloney’s stated [81] intention behind why Scratch was created is simply

that it “encouraged young people to learn through exploration and peer sharing, with less focus on direct

instruction than other programming languages.” Cooper’s [82] viewpoint on Alice is that it engages students

to program within a context to tell stories, which forces students to learn programming by engaging in the

process of writing code.

Weintrop et al. posited reasons why block-based programming might be easier than text-based pro-

gramming [19]. When we focus solely on readability, the attributes consist of the shape and visual layout,

memory aids by way of color categorization, and the perception that blocks are easier to understand due

to them being more like human-readable English (although approximating English is debatable depending

on the block language used). While attributes like color and shape do not change the meaning of blocks,

they may aid in comprehension, task completion speed, and recall. In block languages, colors are used

to categorize blocks into similar functions, so control structures, output, and operator block categories

are colored differently from each other. This differs from a traditional IDE where all keywords are the

same color, regardless of type; for example, “int”, “for”, “if”, and “public static void” are all the same color

in traditional text-based IDEs for Java even though they differ in function. Additionally, the shape of

certain blocks, such as looping structures, convey that all the code inside of them is grouped together,

which simplifies the concept of scope. It is claimed [81, 15] that these visual attributes work in concert,

potentially aiding in comprehension and learning programming. Price [83] reported that students complete

programming challenges faster using block languages, although it is not empirically shown if that effect

was due to these attributes and how they were designed.

Students’ interest in continuing to take computer science courses is, as expected, critical to success in

completing computer science programs. Armoni et al. [79] concluded that teachers reported a doubling of

students enrolling in additional computer science courses when students took an introductory course in a

block language first, which was attributed to their positive attitudes toward programming after the block-

based course. Weintrop and Wilensky [84] found that after a five-week programming course, students who

15

used a block-based modality reported an increased interest in taking additional computer science courses

whereas those who took a text-based modality reported lower interest in subsequent courses. The caveat

to this is selection bias, since these students being studied are the ones who elected to take an initial

programming course. In many other cases [80, 85, 86], interest in additional computing courses started

high and remained relatively high by the end of the course.

2.6 Challenges with Blocks

While block languages afford many benefits to learners, there are challenges to their usefulness in education.

2.6.1 Self-Efficacy & Learning

The efficacy of visual languages has been long debated [29]. Dwyer et al. [87] posit that reading code

in block-based environments to be complex. When any block-based program grows to a certain extent,

there are many components to analyze, which attributed to the complexity. Fundamentally, when code

becomes more complex and longer, it does not become easier to read, even if it is a block-based language.

Additionally, the claims that blocks syntax, or even any programming language syntax, are easier to

understand than text due to any specific syntactic word choice, is a difficult claim to make [88, 89] and

should be further studied in future works. From some students’ perspectives, block languages are “less

powerful,” slower to author, more verbose, and “inauthentic” relative to text-based languages such as

Java [19]. These issues juxtapose the concepts that despite blocks trying to simplify programming concepts,

they might complicate it, while simultaneously being viewed as far too simple to be useful to some.

Weintrop [16] investigated code-reading comprehension for variables, iterative logic, conditional logic,

and procedures, but found no difference in program comprehension between text-based and block-based lan-

guages, which extends the need to do further research regarding Price’s [83] findings. In another study [90],

students demonstrated the ability to understand what a construct does but not how and when to use that

construct when solving problems. This presents a problem for constructionists who are champions for

self-directed students teaching programming principles to themselves. While some researchers [91] suggest

putting the onus on students to be more engaged in their own learning by pure discovery, this is a difficult

expectation to place on K-9 students, aka children, who are learning programming with Scratch or other

visual programming languages. Children are not always the most autodidactically rigorous, and this often

is even more true of those from disadvantaged groups. In cases of self-directed learning, we tend to see

16

code quality [92, 93, 94] and comprehension [90, 95] issues.

In total, these challenge Papert’s and Resnik’s assertion of tinkerability and students leading their

own learning activities. While that certainly works in some cases, we must also remember the selection

bias inherent in their findings. While block languages do appear to be helping us move toward improved

computer science learning, we cannot place an undue burden of that onto the learning environment nor

the learner.

2.6.2 Accessibility

A major challenge for block-based languages, and really any visual language, is accessibility. A number

of researchers working to make block-based languages accessible to visually impaired students [46, 96, 47,

97, 48, 98], neurodiverse students [99, 100], and students with physical impairments [101]. Unfortunately,

these languages are not widely used throughout our society and educational system, which prevents many

students with disabilities from participating in computer science learning activities with their peers. At this

time it does not appear to that the Scratch team, LEGO corporation, or other prominent block language

developers are addressing these accessibility issues, but it would be beneficial if they did considering the

moral, ethical, and legal implications. When the Computer Science for All initiative was created, the “All”

portion of it was intended to be inclusive of everyone, not just those without disabilities.

2.7 Transitioning from Blocks to Text

How to transition novices from basic block-based programming into a more fully-featured text-based pro-

gramming language is frequently discussed in the literature. Studies often start with novices of various

ages to determine how to ease this so-called, “transfer of learning.” Unfortunately, with due deference to

the importance of transfer of learning research, studies showed that learning advantages may cease to exist

after only 10 weeks, meaning no additional impact [102]. If this transitional friction is true, this could bring

into doubt transfer of learning’s real impact if not generalized. Alrubaye et al. [103] gathered preliminary

results that indicates there may be a positive transfer of learning when moving from hybrid block/text

environments to a text-based environment, but it should be noted that it was a small scale study with few

participants and conducted over a two-hour period rather than an actual educational course. To really

understand if this “transfer of learning” is real and sustained, a longer-term study would need to replicate

these findings.

17

Further, novices generally do not pursue adequate depth and breadth of their own volition [104], mean-

ing they tend not to learn advanced programming skills on their own, without a dedicated curriculum.

Kurland and Pea reported that young students with a year of self-guided, discovery-style programming ex-

perience in LOGO were able to write and interpret short, simple programs, but they had difficulty creating

programs involving fundamental programming concepts and had many incorrect perceptions of how pro-

grams work [105]. Moors et al. [95] concluded that self-guided exploration in block languages contributes

to poor programming practices and a lack of understanding programming fundamentals. Poorly learned

fundamentals and practices can exacerbate problems in the transition from block languages to a more

difficult text-based modality.

While there may not be a difference in capabilities when transitioning from block-based to text-based

languages, there may be a deleterious effect on confidence. In studying the effect of transitioning from

Alice to Java or C++, Powers et al. found that students were overwhelmed by all the syntax, and they

were discouraged when their programs would not compile, which led to both strong and weak students

losing confidence in their programming capabilities [106]. Students found Alice and Scratch, in another

study that compared Scratch to text-based programming [80], to not resemble “true” programming, and

students that programmed in text-based languages had higher confidence in their skills. Sometimes words

like “authentic” or “inauthentic” were used to describe such observations by students. Loss of confidence

has shown to be a reason that affects student drop out rates in computer science programs [107], which

makes this a precarious transition point in a learner’s journey.

Conversely, Bau endeavored to reverse the loss in confidence with Droplets and Pencil code [108, 109].

Weintrop and Wilensky [110] found no significant difference in student’s confidence levels between block-

based and text-based programming when using Pencil.cc, a customized Pencil Code environment that allows

students to program in either text or blocks. Krafft et al. [111] introduced block-based programming with

Scratch to university students and staff without a background in computer science. While the researchers

did not see an effect on novices’ abilities, they did see positive effects on their identities as novices and

their motivation to continue learning. The implication is that carefully designed block languages that are

not too distinctively different from text-based programming may help prevent loss of confidence for novices

in the transition from blocks to text. Furthermore, Armoni et al. [79] reported increased enrollment in

computer science courses and higher levels of motivation and self-efficacy in students who took a five-month

programming class exclusively in Scratch before transitioning to a text-based programming course, which

calls the loss of confidence into question.

18

Weintrop et al. posited that future programming for non-computer science people could be done

entirely in a block-based language if it was carefully considered and designed [102]. This suggests that all

programming tasks could be performed successfully in a block-based environment, while being understood

and used at least as successfully as in a text-based programming environment. The caveat here is that

for a block language to aid in the transition from novice to professional, it would be beneficial for it to

be a structured editor built on top of an existing language, rather than a stand-alone visual programming

language [112].

2.8 Computational Thinking

Computational thinking, a term loaded with multiple connotations by an array of stakeholders, is summa-

rized by Lodi [113] as “a form of thinking for solving problems by expressing the solution in a way that can

be automatically carried out by an (external) processing agent.” In essence, it is approaching and solving

problems with the same mindset as a computer scientist. Brenan and Resnick [27] created a framework of

three key dimensions for computational thinking: computational concepts (e.g. sequences, loops, events,

etc), computational practices (incremental and iterative, testing and debugging, etc), and computational

perspectives (expressing, connecting, questioning, etc). Through the research of Zhang and Nouri [114],

which expanded upon Brenan and Resinck’s work, all computational thinking skills classified by these

researchers were able to be taught with a single visual programming language—Scratch [49]—even though

insofar it still rarely scales beyond a few weeks of instruction in a K–12 classroom. Many researchers have

expanded on the initial frameworks for computational thinking [114] with the intent to help educators

and society determine what to teach and what can be learned, questions that are crucial to teaching any

subject.

The considerations for using block languages, or any visual languages, is critical to address for the

advancement of computational thinking in K–12 and higher education. A primary intent of block languages

is to enable learners with no prior experience to immediately begin experimenting with programming [81],

the basis of computational thinking. While Wing [115] initially believed that it was an insurmountable

task to get computational thinking into K–12, her work along with those of countless others is making

that dream into a reality despite researchers and educators alike wrestling with the meaning and scope

of computational thinking in practice [116]. The approachability of block languages is fundamental to

introducing computational thinking pedagogy into K–12 and higher education, and computational thinking

19

concepts are starting to be included in standards such as the Common Core Mathematics and the Next

Generation Science Standards.

2.9 Blocks for Educating Educators

A particular area of interest in easing transitional friction is training educators at the K–12 level. There

cannot be an expectation of students at the K–12 level learning programming and computational thinking

broadly if our educators are not properly prepared to teach these subjects. While many workshops and

outreach programs [117, 118, 119] have been created to help prepare teachers, there is a degree of self-

selection bias in those who choose to attend these workshops. Computational thinking competencies are

not often included in the bachelors degree programs that most K–12 educators complete [120]; they are

mostly relegated to specialty workshops or specialized university certificate programs and degrees.

Programming in block-based languages, and the transition from them to text, is only one aspect of

transitional frictional. Our K–12 educators must be first taught computational thinking and programming,

then how to design pedagogy about it, and then understand both that this friction exists and where in

order to smooth it out. They are also hampered by the same limitations that prevent developers from more

broadly using block languages such as enabling collaboration, version control, available libraries to extend

code capabilities, robust debugging capabilities, and automated testing. This is a large ask of individual

educators to address without broad and deep support from multiple societal angles. One potential solution

that could ease the educational burden as well as remove the transitional friction might be making block

languages themselves able to scale from children to professional developers.

The research literature contains many other block-based programming studies directed at educators,

which range from curriculum design and tools [121, 122, 96, 123, 124] to grading and rubrics [125, 126].

2.10 Blocks Beyond Formal Education

Shepherd et al. [127] discussed using a block-based language to address difficulties with programming basic

industrial robots. Programming languages for industrial robots are difficult to use; they have esoteric

naming conventions and require the use of buttons on a control pad, in addition to the language, to

function properly. In fact, the research literature is focused predominantly on K–12 novices; adults outside

of the university setting are only studied when they are novices outside of the typical computer science and

programming realm. Various studies [128, 129, 130, 131] have addressed professional adult novices learning

20

how to program for business purposes. In these, the focus was not on on educating them in traditional

computer science principles; rather it was making programming tasks easier for adult novices who do not

have a professional software engineer to help solve small business needs or for programming manufacturing

equipment.

2.11 Professional Software Engineers

When broadening the scope to include empirical studies using any type of visual programming language,

in one study, professional programmers noted that while visual programming might improve the ease of

writing code, they believed visual programming would be significantly less powerful [32]. This study was

an early indicator of professionals’ reasoning for rejecting many types of visual programming languages.

A related study conducted broadly on visual programming showed that visuals provide explicit, organized

information, and using them helps improve correctness, speed, or both [29]. Conversely, Bragdon et

al. found that professionals using Code Bubbles, a diagram-based language where snippets of code from

multiple files in a project laid out on a canvas (which seem less organized due to a disperse layout), helped

improved the time to complete tasks and correctness [33], although they had arrows and other constructs to

aid in organization. Since navigation was only a small part of the time savings, Bragdon et al. hypothesized

that professionals were able to shift focus quickly and offload their working memory because code was kept

on the screen in front of them. Unreal Blueprints, a diagram-based language, also make use of horizontal

layout and their tools are adopted heavily by game designers at the professional level. Diagram-based

visual languages utilize various techniques (such as lines and arrows) to show code flow, to mitigate having

a disperse layout.

Prior studies demonstrated that program comprehension and its related tasks took over half of the

time spent during the software development and maintenance process [132, 133]. Developers assimilate a

program’s purpose primarily through reading the comments, but writing comments is often sparsely applied

in software development, which can make program comprehension more difficult and time consuming [134].

This sparse “documentation” via comments means that developers must spend more time analyzing the

actual code itself to understand what it is they are maintaining. This is problematic in light of studies that

demonstrate that reading code in block languages is slower than text languages [29, 87]. The slowdown in

developer productivity could lead to broad economic impact if languages like these were adopted.

Despite any challenges, assumed or observed, the time, money, and proliferation of research poured into

21

block languages begs the question of why there is a dearth of research addressing how trained computer

science professionals could use block-based languages. Clearly, visual languages, and blocks specifically,

could help with task speed, correctness, and focus. Even with a powerful visual programming language

cousin to blocks, Unreal Blueprints, there is little research on usability by professional computer scientists

and programmers [135, 136] despite the popularity of the language. Certainly, power of the language,

authoring speed, and limited functionality [19] for current block-based programming languages are consid-

erations that could hinder professionals, but again, this does not seem to hamper Blueprints from being

the go-to choice for game development. Having a block-based language that can scale from K–12 education

through professional project development would mitigate any learning transfer issues.

Weber [112] posits that minimal keyboard support (block-based languages often require using a mouse

to drag and drop code) might be the primary reason why block languages are not used more widely

by professionals. Additionally, lacking the ability to scale, collaboration, version control, and widely-

available libraries and tools [62] currently prevent block-based languages from being used at production

scale, so potentially this lack of maturity of block languages is the primary hindrance that eventually can be

overcome. But also, might less empirical factors prevent professionals from using block-based languages?

Perhaps text-based languages feel more like “real programming” because that is the way it has “always

been” done by “real software developers.” Maybe the colorful blocks look like a child’s play-toy rather

than a serious tool for work. Regardless of the reasons, empirical or emotional, we may garner insights

into improving both programming learnability and professional programming practice by studying how

professional computer scientists handle block-based programming languages.

2.12 The State of Block Editors and IDEs

Programs must be created inside of an environment that supports syntax construction for the language

being written. In the case of text-based languages, this could be as simple as any text editor or complex

like an integrated development environment (IDE) with robust features. To garner the benefits of visual

languages, a number of researchers [137, 138, 139] have created visual IDEs or overlays for text-based

languages.

Visual languages typically have their own environment where everything is contained. Maloney et

al. [81] line out several of the design decisions made for the Scratch environment: single-window interface,

being “live” and tinkerable, making execution visable, no error messages, making data visible and concrete,

22

and minimizing the set of commands. These design decisions were intended to entice self-directed learning

and exploration in an easily navigable way. After performing a study on a Scratch-based language on fourth

graders, Dwyer et al. [87] concluded that features in the interface created sources of both information and

misinformation for users. Because of the density of visual information on the screen, some of which is quite

subtle, students overlooked relevant features. Moreover, students believed some features were important

and conveyed certain information that they actually did not, which created misinformation in the students’

understanding of how programs worked.

Lin and Weintrop [140] analyzed 46 block-based programming environments and classified them into

four categories: blocks-only, one-way transition, dual-modality, and hybrid. Of particular note is the

hybrid environment, which blends text-based and block-based features into a keyboard-driven block-based

programming environment. While this category is still nascent, students in the study who used the hybrid

environment reported high satisfaction and low frustration while also performing tasks significantly faster

than a group using Java to perform the same tasks. This suggests there is an avenue for a block-based

programming language and IDE to scale from an educational context through to the professional sphere.

By gathering feedback from both novices and professionals in the same study about what visual at-

tributes and context-aware suggestions are helpful or harmful, we may see patterns emerge to help guide

the future of block-based programming language and IDE evolution.

23

Chapter 3

Study 1: Assessing Visual Attributes’

Role in Readability and Comprehension

of Block-Based Programs

3.1 Methods

3.1.1 Hypotheses

In pursuit of assessing developers’ perceptions of visual attributes that are inherent to block languages, we

formulated the following null hypotheses:

1. There will be no difference in preference or correctness between groups given the block colors or

grayscale treatments.

2. There will be no difference in preference or correctness between groups given the single-aligned vertical

block layout arrangement or the spatial (dispersed, horizontal) layout.

3. There will be no difference in preference for block shapes regardless of treatment group or experience.

4. There will be no preference for the lack of comments and line numbers.

24

3.1.2 Inclusion and Exclusion

We included preliminary demographic questions to determine each participant’s highest level of completed

education, current level if still in college, if they are currently or have ever been employed to write code

professionally, and what programming languages they have used to write code. None of these questions

excluded or included a participant in the study, nor did it influence to which group (see table 3.1) they are

assigned. These data were collected solely for the purpose of determining the effect of the particular task

upon each level of experience: professional or novice.

3.1.3 Participant Characteristics

We recruited both university students and professional programmers to help understand the potential

differences. University students were recruited from the authors’ institution’s undergraduate and graduate-

level computer science program, and professional programmers were solicited on LinkedIn and via direct

email. If students had professional experience, they were included in the professional category.

3.1.4 Sampling Procedures

Participants were recruited from four university level undergraduate courses at the authors’ institution.

Additionally, participants were solicited through professional networks such as LinkedIn and through the

corresponding author’s network. Participants were presented the option to participate and self-selected

into the study. There were a total of 87 participants, 30 of which were classified as professionals and 57 of

which were classified as novices. Classification was done during the demographics questions, one regarding

if the participant was currently or had ever previously been employed to write code as all or part of their

job function. After this, participants were then randomly assigned to groups by the online testing system,

which resulted in both professionals and novices being randomly assigned to each of the four groups (see

table 3.1). Due to this random assignment and experience level classification, the number of professionals

were not evenly distributed to the groups.

3.1.5 Sample Size, Power, and Precision

As we are unaware of an existing study on the same survey, there was no direct way to calculate our

required sample size, power, or precision. As such, we undertook a series of pilot studies to provide critical

feedback on the study from participants. All participants that participated in these pilots were separate

25

Table 3.1: Groups
Group Block Coloring Scroll Direction

A Color Vertical
B Color Horizontal
C Grayscale Vertical
D Grayscale Horizontal

from those reported in this study. In these pilots, we started with a small sample size, then roughly doubled

from one major pilot version to the next. The data from these pilots, which is ultimately consistent with

the data reported here, is not directly comparable due to changes in questions and experimental design,

but we point it out here as it was an important part of our process in creating our instrument.

3.1.6 Measures and Covariates

The instrument asked a programming question about a small program in the block-based language BlockPy [141]

and then asked to rate nine attributes. A Likert scale was used to rate each attribute independently. This

progression was repeated for seven programming questions, which forms the basis of a repeated measures

design. The primary distinctions among groups are for group differences as shown in table 3.1. The di-

rection of scrolling and alignment (dispersed/horizontal only vs in-line/vertical only) and coloring of the

blocks (full color vs grayscale) form the two-by-two between-subjects design. Participants were assigned

into “novice” vs “professional” categories based on self-reported demographics questions about their prior

work experience, which transforms the study to a two-by-two-by-two between-subjects repeated measures

design when comparing the groups to each other.

After answering each programming task, the participants were asked to select how helpful or harmful

each visual indicator as shown in table 3.2 was in answering the previous question. Participants were

presented a Likert scale in the form of sliders ranging from one to seven, with one meaning “extremely

harmful” and seven meaning “extremely helpful.” The midway point of four (“neither helpful nor harmful”)

was the default position, but participants were required to at least click on each Likert slider in order to

proceed. The “other” attribute was not analyzed for this work, since the participants were able to write

in their own free-form text in this field. Write-in results from the “other” attribute may be analyzed for

future research directions.

Task timing and correctness are also considered in the analysis. Due to the uneven distribution of

professionals and few participants in two groups, it is difficult to draw strong conclusions from these

26

Table 3.2: Attributes Assessed
Attr # Attr Description

1 Color of the block
2 Shape of the block
3 Arrangement of the blocks
4 Scrolling
5 Text, punctuation, or symbols
6 Lack of comments
7 Lack of line numbers
8 Spacing
9 Dropdown arrow next to text
10 Other

metrics. In addition, since this instrument has not been psychometrically validated, there is a possibility

that there is unevenness in task difficulty that reduces the strength of these measures.

3.1.7 Data Collection

The instrument was a survey administered via Qualtrics. All participants had to consent to be in the

study and then were asked demographic questions. Then Qualtrics automatically randomized them into

four roughly balanced groups. Participants did not know they are assigned into a group nor that other

groups existed. Each group was provided an explanation of what they need to know relative to the group

they were assigned, and then they began their tasks. Midway through the assessment, participants were

provided additional explanations relative to their assigned group to complete the rest of the tasks. The

tasks consisted of a code sample, questions about the code, and questions about what helped and hindered

them with arriving at the answer.

3.1.8 Quality of Measurements

As the study instrument was developed, participants were asked to provide feedback about their experience,

which was used to improve subsequent versions. A question regarding the helpfulness or harmfulness of

each visual attribute was repeated for each task. While we initially considered asking this question at

one or two other areas of the instrument, asking after each task appears to have improved the quality

of the measurements. This may be attributed to participants considering how they derived each answer

immediately after answering rather than having to think back on how they assessed groups of questions

over a longer period of time. It also likely helped account for differences in task goals and difficulty.

27

Figure 3.1: Colorful, In-line, Vertical Scroll

3.1.9 Instrumentation

There were a given set of tasks that all participants solved, but those tasks were presented with different

visual coding cues for each group. The four groups as shown in table 3.1 are as follows: Group A received a

colorful, vertically aligned rendering of a block-based program as seen in figure 3.1, Group B received a col-

orful, unaligned, horizontally dispersed rendering of a block-based program, Group C received a grayscale,

vertically aligned rendering of a block-based program, and Group D received a grayscale, unaligned, hori-

zontally dispersed rendering of a block-based program as seen in figure 3.2. The images were placed into

an iframe to ensure each of the blocks in the layouts were the same size across all four groups and to force

participants to scroll in their assigned direction. The full instrument is in appendix A).

The groups all received the same set of tasks, which included the code as described above, a sub-question

about the code as described in table 3.3, and questions about what visual indicators helped or hindered

them in deciphering the answer. The questions about visual indicators were the same for all sub-questions

about the code. There were seven total code-related tasks, of which four were designated as locating tasks

and three were interpreting tasks. All participants performed all tasks in the same order, so the only

28

Figure 3.2: Grayscale, Dispersed, Horizontal Scroll

Table 3.3: Group Attributes
Question Designation Type

1 How many times is a variable created in the
code above?

Locating Fill in the blank

2 How many times is a variable used (not set)
in the code above?

Locating Fill in the blank

3 How many strings are in the code above? Locating Fill in the blank
4 Which variable was used the most? Locating Mult. Choice (6 opts)
5 What is the first line of text displayed when

the user runs the program?
Interpreting Mult. Choice (12 opts)

6 Assume num is set to 95 and the user enters
the integer 5. What is the next single line of
text displayed to the user?

Interpreting Mult. Choice (12 opts)

7 Assume num is set to 50 and the user enters
“help” at the prompt. What is the next single
line of text displayed to the user?

Interpreting Mult. Choice (12 opts)

difference among groups were the code treatments as described above.

3.1.10 Masking

Participants neither knew that they were being randomly assigned to groups, nor did they know other

groups existed. Since Qualtrics automated the randomization, no one administering nor assessing the

study had influence over the group assignment. Participants self-reported their prior job experience, but

this measure did not influence to which group they were assigned nor did participants know this metric

would be analyzed or how.

29

3.1.11 Psychometrics

Participants were asked to rate how much certain visual attributes helped or harmed them with each task.

The rating was done on a 7-point Likert scale from a left-most position of “extremely harmful” to the

right-most position of “extremely helpful” for each attribute. While there appears to be some disagreement

in the psychology literature, Carmen et al. concluded that even though scale direction has some impact

on responses, scale direction does not consistently affect response quality [142].

For this version of the survey, a slider mechanism was used for the Likert ratings. Funke et al. posited

that radio buttons are better than sliders for break-off rates, anchoring effects, identifying intentional vs

unintentional positioning, and higher response times [143]. While some of these, such as forcing participant

positioning, can be mitigated, we should consider using radio buttons instead of sliders in future versions

of this instrument. Beyond that, there were no psychometrically validated instruments ready to use for

our research questions that we were aware of in the literature.

3.1.12 Random Assignment Method

Since Qualtrics was utilized, randomization was done by creating a Qualtrics randomizer to set embedded

data for each participant after the demographics data was presented. The embedded data consisted of a

Group field that consisted of Group_A, Group_B, Group_C, or Group_D. The option to “evenly present

elements” was selected to theoretically evenly distribute participants into groups. This randomizer did not

take experience into account, which is why professionals were not evenly distributed into groups.

3.1.13 Random Assignment Implementation and Concealment

Participants self-selected into the study and self-enrolled. The Qualtrics system automatically and ran-

domly distributed them into groups roughly evenly.

3.1.14 Data Diagnostics

Inclusion criteria were established to ensure participants took a minimum amount of time to consider the

questions. The median time it took all participants to take the survey was 16.68 minutes with the first

quartile finishing in 12.07 minutes. The base criterion was to spend at least ten minutes working on the

tasks. If a subject took less than ten minutes, we hand-checked the data to inspect for obvious click

throughs or someone injecting what could be fake data. If the data looked like it was faked, we removed

30

the participant. With this inspection, we found seven people that appeared to do this, leaving 87 in the

study. This inclusion criterion was established because incentives were offered to take the survey, and some

of them appeared to perform the fastest possible clicks to get to the end: e.g. rating all tasks the same

on the scale or typing in what appeared to be junk in the text boxes. Qualtrics required participants to

complete each task before moving on to the next task and every question had to be answered inside of each

task. Abandoned and incomplete assessments were also excluded from the diagnostics.

3.1.15 Analytic Strategy

The visual attribute data was subdivided and analyzed per attribute across all tasks in aggregate. We

performed independent repeated measures ANOVAs on each attribute with the treatments of coloring,

scrolling, and experience as interaction terms. When significance was found in the interactions, we per-

formed post hoc tests to determine which interactions were significant. We also created box plots in the

two-by-two-by-two layout to visually assess the ratings.

Timing and correctness were each considered in their own using repeated measures ANOVAs with the

treatments of coloring, scrolling, and experience as interaction terms. When significance was found in the

interactions, we performed post hoc tests to determine which interactions were significant.

3.2 Results

3.2.1 Participant Flow

Participants were recruited and joined the study over a 24-day period in June through July, 2023. The

participants in each group are quantified in table 3.4 for a total of 87 participants across all groups.

We discarded an additional 53 incomplete responses, most of which did not proceed further than the

demographics or explanation sections. Only one made it to the beginning of the tasks, but they dropped

out after the first question, which is why this participant was also discarded.

3.2.2 Recruitment

Participants were recruited beginning two days before the first response through the first eight days of

receiving responses. The responses for the rest of the period came in after the recruitment period ended.

There was no follow-up after the initial recruitment period, as is typical under our Ethics board rules.

31

Table 3.4: Participants
Group Classification Per Classification Group Total

A Professional 14 25
Novice 11

B Professional 4 19
Novice 15

C Professional 3 19
Novice 16

D Professional 9 24
Novice 15

Follow-ups are allowed under the guidelines, but generally our ethical rule of thumb is to leave people alone

if they do not want to participate.

3.2.3 Statistics and Data Analysis

We utilized a mixed factors repeated measures analysis of variance (RM-ANOVA) to analyze each attribute

individually with a within-subjects predictor of task (to account for repeated measures) and between-

subjects predictors of scroll direction, block coloring, and experience—with the requisite two-way and

three-way interaction terms. This in turn leads to eight groups by dividing the original four treatment

groups between the two types of experience: novices and professionals. The models estimate relationship

within tasks and between predictor variables to arrive at the outcome variable, Likert rating. When running

the RM-ANOVA, we chose to use Type II due to Langsrud’s [144] assertion that it is preferable to Type

III. The following section is a per-attribute analysis for each of the models.

One of the fundamental assumptions in the univariate RM-ANOVA procedure is that of sphericity,

which checks whether the variance/covariance matrix of the observed data from the Repeated Measures

follows a particular pattern. If Mauchly’s test of sphericity indicates the assumption of sphericity is violated,

we apply a Greenhouse-Geisser correction to the degrees of freedom used to calculate the F-ratio. These

corrections often increase the p-value, so significance is reported again. Statistics were conducted and

charts were created using RStudio Version 2023.09.0+463.

32

Figure 3.3: Block Color: Color Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta1 Tb1 Tc1 Td1 Te1 Tf1 Tg1 Ta1 Tb1 Tc1 Td1 Te1 Tf1 Tg1

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Color attribute rating by group and experience

33

Color of the Blocks

The RM-ANOVA for this first attribute, “Color of the Blocks,” is statistically significant for the color

treatment, F (1,79) = 44.94, p < .001, generalized Eta squared (η2G) = .290, indicating that participants

in the two groups who received the color treatment rated the block coloring differently than those in the

grayscale treatment groups rated the color, or lack thereof.

Additional significance was found in the main effect of task F (6,474) = 5.61, p < .001, η2G= .020, the

color:task interaction F (6,474) = 4.17, p < .001, η2G= .015, and the color:scroll:experience interaction

F (1,79) = 7.63, p = .007, η2G= .065.

The generalized Eta squared indicated the effect of the color treatment to be large at 29.0% of the

model, (η2G= .290). The effect of the color:scroll:experience interaction is a nominal effect size of 6.5% of

the model, (η2G= .065). The within task effects on their own and in interaction with color are quite small.

When analyzing Mauchly’s test, the data indicated that the sphericity assumption was not met for the

color:task interaction (W = .59, p < .001), thus a Greenhouse-Geiser correction was applied (ϵ = 0.86).

The interaction was still found to be significant (p < .001) and generalized Eta squared indicated the effect

when adding within-task differences was also small, (F (5.16, 407.64) = 4.17, p < .001, η2G= .015).

Shape of the Blocks

The attribute labeled “Shape of the blocks” was significant for the color treatment, F (1,79) = 4.01, p =

.049, η2G= .027, indicating that participants in the two groups who received the color treatment rated the

block shape differently than how those in the grayscale treatment groups rated the shape of the blocks.

Task was also significant F (6,474) = 2.16, p = .046, η2G= .012.

The generalized Eta squared indicated the effect of the color treatment to be small at 2.7% of the

model, (η2G= .027). The effect of the task variable is a small portion of the model at 1.2%, (η2G = .012).

None of the within task effects were significant. The boxplots per task and group are in figure 3.4.

Arrangement of the Blocks

The “Arrangement of the Blocks” was significant for the color treatment, F (1,79) = 4.33, p = .041, η2G

= .029, indicating that participants in the two groups who received the color treatment rated the block

arrangement differently than those in the grayscale treatment groups rated it. Additional significance was

found in the interaction terms of color:scroll:task F (6,474) = 3.34, p = .003, η2G = .019. The generalized

34

Figure 3.4: Shape of the Blocks: Block Shape Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta2 Tb2 Tc2 Td2 Te2 Tf2 Tg2 Ta2 Tb2 Tc2 Td2 Te2 Tf2 Tg2

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Block Shape attribute rating by group and experience

35

Eta squared indicated the effect of the color treatment is small at 2.9% of the model, (η2G = .029). The

boxplots per task and group are in figure 3.5.

Scrolling

The RM-ANOVA for the “Scrolling” attribute was significant for the scroll treatment, F (1,79) = 9.04, p =

.004, η2G = .067, indicating that participants in the two groups who received the vertical scroll treatment

rated scrolling differently than those in the horizontal scroll treatment groups. The generalized Eta squared

indicated the effect of the scroll treatment to be average at 6.7% of the model, (η2G = .067). The boxplots

per group and task are in figure 3.6.

Text, Punctuation, or Symbols

The attribute “Text, Punctuation, or Symbols” is statistically significant for the main effects and interaction

effects for task, F (6,474) = 10.45, p < .001, η2G = .048, the color:task interaction F (6,474) = 2.36, p <

.030, η2G = .011, and the scroll:experience:task interaction F (6,474) = 2.89, p = .009, η2G = .013. This

indicates that there were significant within task differences, which makes sense due to the nature that some

tasks relied more on reading text than did others. The boxplots per task and group are in figure 3.7.

Lack of Comments

When analyzing the attribute “Lack of Comments,” significant main effects and interaction effects were

found for task, F (6,474) = 5.72, p < .001, η2G = .015, and the scroll:task interaction F (6,474) = 2.58, p

= .018, η2G = .007. This indicates that there were significant within task differences for participants when

rating the “Lack of Comments” attribute, which makes sense due to the nature that some tasks required

interpreting code versus others that were just finding code elements such as variables. The boxplots per

group and task are in figure 3.8.

Lack of line numbers

The attribute “Lack of Line Numbers” displays significant main effects and interaction effects for task,

F (6,474) = 4.76, p < .001, η2G = .012, and the experience:task interaction F (6,474) = 2.27, p = .004,

η2G = .006. This indicates that there were significant within task differences for participants when rating

36

Figure 3.5: Arrangement of the Blocks: Block Arrangement Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta3 Tb3 Tc3 Td3 Te3 Tf3 Tg3 Ta3 Tb3 Tc3 Td3 Te3 Tf3 Tg3

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Block Arrangement attribute rating by group and experience

37

Figure 3.6: Scrolling Direction: Scroll Direction Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta4 Tb4 Tc4 Td4 Te4 Tf4 Tg4 Ta4 Tb4 Tc4 Td4 Te4 Tf4 Tg4

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Scroll Direction attribute rating by group and experience

38

Figure 3.7: Text, Punctuation, & Symbols: Text, Punctuation, & Symbols Attribute Rating by Group and
Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta5 Tb5 Tc5 Td5 Te5 Tf5 Tg5 Ta5 Tb5 Tc5 Td5 Te5 Tf5 Tg5

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Text, Punctuation, & Symbols attribute rating by group and experience

39

Figure 3.8: Lack of Comments: Lack of Comments Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta6 Tb6 Tc6 Td6 Te6 Tf6 Tg6 Ta6 Tb6 Tc6 Td6 Te6 Tf6 Tg6

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Lack of Comments attribute rating by group and experience

40

the “Lack of Line Numbers” attribute, which makes sense due to the variation in what participants were

asked to do in each task. The boxplots per task and group are in figure 3.9.

Figure 3.9: Lack of Line Numbers: Lack of Line Numbers Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta7 Tb7 Tc7 Td7 Te7 Tf7 Tg7 Ta7 Tb7 Tc7 Td7 Te7 Tf7 Tg7

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Lack of Line Numbers attribute rating by group and experience

41

Spacing

The RM-ANOVA for the “Spacing” attribute is statistically significant for the main effect of task, F (6,474)

= 2.77, p = .001, η2G = .012. When analyzing figure 3.10, it appears that most participants rated it

generally as neither helpful nor harmful. The boxplots per group and task are in figure 3.10.

Dropdown Arrow Next to Text

When analyzing the “Dropdown arrow next to the text,” which is an attribute of variables in this pro-

gramming environment, we discover that there is significance in the main effect of the scroll treatment,

F (1,79) = 5.05, p = .003, η2G = .023, indicating that participants in the two groups who received the

vertical scroll treatment rated usefulness of the dropdown arrow in the block differently than those in the

horizontal scroll treatment groups rated it. Additional significance was found in the interaction terms of

the scroll:task interaction F (6,474) = 3.63, p = .002, η2G = .028. The generalized Eta squared indicated

the effect of the scroll treatment is small at 2.3% of the model, (η2G = .023). The boxplots per task and

group are in figure 3.11.

3.2.4 Timing and Correctness

When analyzing the task timing, we discovered there were 20 extreme outliers from 17 different partic-

ipants, which reduces the quality of measurements, including half of the participant group comprised of

professionals who received the color plus horizontal treatments. Additionally, professionals who received

the color plus horizontal treatments comprised of only four participants and the group comprised of pro-

fessionals who received the grayscale plus vertical treatments contained only three members. The numbers

are reported here for both task timing and correctness with the caveat that these groups are too small to

draw reliable conclusions.

The RM-ANOVA for task timing is statistically significant for task, F (6,474) = 13.56, p < .001, η2G

= .113, the experience:task interaction F (6,474) = 2.52, p = .021, η2G = .023, the color:scroll:experience

interaction F (1,79) = 7.72, p = .007, η2G = .025, the color:scroll:task interaction F (6,474) = 2.74, p =

.012, η2G = .025, the color:scroll:experience:task interaction F (6,474) = 2.36, p = .030, η2G = .021. The

significance of the task main effect and each of the task interactions indicates that there were significant

within task differences for the amount of time it took participants to complete each task. The primary

interaction of note is the color:scroll:experience interaction, which indicates there is a significant difference

42

Figure 3.10: Spacing: Block Spacing Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta8 Tb8 Tc8 Td8 Te8 Tf8 Tg8 Ta8 Tb8 Tc8 Td8 Te8 Tf8 Tg8

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Block Spacing attribute rating by group and experience

43

Figure 3.11: Dropdown Arrow: Dropdown Arrow Attribute Rating by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta9 Tb9 Tc9 Td9 Te9 Tf9 Tg9 Ta9 Tb9 Tc9 Td9 Te9 Tf9 Tg9

2

4

6

2

4

6

2

4

6

2

4

6

Task

R
a
ti
n
g

Dropdown Arrow attribute rating by group and experience

44

Table 3.5: Task Correctness Between Professionals and Novices
Experience Mean SD

Novice 0.484 0.500
Professional 0.595 0.492

with this three-way interaction.

The RM-ANOVA for task correctness is statistically significant for the main effects experience, F (1,79)

= 6.31, p = .014, η2G = .020 and task F (6,474) = 50.96, p < .001, η2G = .323. As expected, the greatest

strength of the model is based on task as 32.3% whereas experience explains 2.0% of the model. Table 3.5

shows the mean and standard deviation of correctness for professionals and novices on a scale of zero to

one.

3.3 Discussion

3.3.1 Support of Original Hypotheses

Due to the limited participant pool, we were unable to find statistically significant differences between

novices and professionals, so a future study should be conducted with a larger group. Regardless, we were

able to gain some valuable insight into what visual attributes are helpful and harmful. In order to test for

significance of correctness, we would need a much larger participant pool. With that, we hope to see if

those hypothesis bear out with correctness data added. Until then, research questions one and two can at

a maximum be partially supported.

3.3.2 Hypothesis 1

H0: There will be no difference in preference or correctness between groups given the block colors or grayscale

treatments.

Block colors were preferred as a means to help participants when answering questions, thus we partially

reject the null hypothesis 1 in favor of the alternate hypothesis: there is a difference in preference between

the groups given the block colors versus the grayscale treatment. This finding was supported for both

novices and professionals. When analyzing at the post hoc comparisons, we see that novices rated color

and grayscale differently within the same scroll groups, but professionals only rated a significant difference

in color versus grayscale in the horizontal scroll group. The groups that received the color treatment rated

45

Figure 3.12: Task Timing by Group: Duration per Task by Group and Experience

Novice Pro

H
o

riz
o

n
ta

l

C
o

lo
r

V
e

rtic
a

l

C
o

lo
r

H
o

riz
o

n
ta

l

G
ra

y

V
e

rtic
a

l

G
ra

y

Ta.timeTb.timeTc.timeTd.timeTe.timeTf.timeTg.time Ta.timeTb.timeTc.timeTd.timeTe.timeTf.timeTg.time

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

Task

D
u
ra

ti
o
n

Duration per task by group and experience

46

color of the blocks as beneficial, whereas those with the grayscale treatment rated the color of the blocks

to be detrimental. Surprisingly, professionals in the vertical groups were neutral to colorful blocks versus

grayscale blocks. Additionally, there was a significant difference between how professionals and novices

rated the attribute between scroll directions when the blocks were in grayscale. Professionals rated the

color attribute much lower in the gray-horizontal treatment group than did novices, and professionals rated

the color attribute much higher in the color-vertical treatment group than novices did. This could be due to

various factors such as novices’ lack of experience, varying degrees of experience within the novices group,

or the limited pool of participants.

3.3.3 Hypothesis 2

H0: There will be no difference in preference or correctness between groups given the single-aligned vertical

block layout arrangement or the spatial (dispersed, horizontal) layout.

Single-aligned block layout with vertical scrolling was preferred over dispersed, horizontally scrolling

layouts, thus we partially reject the null hypothesis 2 in favor of the alternate hypothesis: there is a

difference in preference between the vertical vs spatial layouts. For both professionals and novices, vertical

scrolling was rated significantly higher than horizontal scrolling. In both horizontal-scrolling treatment

groups, horizontal scrolling was seen as very harmful to completing the task at hand. Professionals found

horizontal scrolling to be much more harmful than did novices, which again could be due in part that it is

different from their accustomed layout and practices.

In the case of vertical scrolling, professionals were somewhat neutral to the helpfulness or harmfulness,

likely because this is what they are used to doing, thus scrolling vertically was seen as normal rather than

specifically beneficial. Novices found scrolling vertically to be somewhat helpful, which is likely a matter

of rating the capability and necessity of scrolling itself, rather than the direction of it, as slightly positive.

The slightly positive rating from novices might be attributed to the good subject effect, but that is difficult

to fully ascertain with the given data.

3.3.4 Hypothesis 3

H0: There will be no difference in preference for block shapes regardless of treatment group or experience.

There was a difference in the preference for block shapes between the color and grayscale groups, thus we

reject the null hypothesis 3 in favor of the alternate hypothesis: there is a difference in preference between

47

treatment groups. When analyzing figure 3.4 we can this is especially true for professionals, who found

the shape of the block to be very helpful in the color-horizontal treatment group yet were more neutral in

the grayscale vertical treatment group. Professionals tended to rate the shape of the blocks as less helpful

in each of the grayscale treatment groups relative to the groups that received the color treatment. This

indicates that professionals use visual cues differently, and perhaps in a more refined manner, than novices

who are still developing their programming skills. These findings should be considered further for color

blind and visually-impaired individuals, especially when horizontal layout is allowed or enforced by the

language design, since block shape could help compensate for visual impairments.

3.3.5 Hypothesis 4

H0: There will be no preference for the lack of comments and line numbers.

Since all groups received the same treatment without comments and without line numbers, we were

unable to truly test for significance of these variables. Thus we fail to reject the null hypothesis. Using

this data, we can look at the average Likert ratings for “Lack of comments” and “Lack of line numbers” to

to help design a future study. Overall, the lack of comments was rated as harmful, M = 3.30, SD = 1.19.

Novices found the lack of comments more harmful, M = 3.18, SD = 1.35, when they performed tasks than

professionals did, M = 3.54, SD = 0.76. Likewise, the lack of line numbers was also reported as harmful

overall, M = 3.47, SD = 1.11. Again, novices found the lack of line numbers to be more harmful, M =

3.37, SD = 1.27, when completing tasks than professionals did, M = 3.66, SD = 0.70.

3.3.6 Similarity of Results

Block colors and color categorization has been a point of discussion in the literature. Weintrop et al.

posited, via positive anecdotal responses, that professionals appreciate block colors as they can see how the

blocks convey syntactic information [19]. This work provides quantitative support for such a conclusion.

3.3.7 Interpretation

This study aimed to quantify what visual attributes were determined to be helpful or harmful for completing

tasks correctly and quickly. With the limited participant pool, we were not able to test support for

correctness, but we were able to gain some valuable insight into what visual attributes are helpful and

harmful. In order to test for significance of correctness, we would need a much larger participant pool.

48

Colors and color categorization are beneficial for both novices and professionals. While there is still

debate as to which colors to use or not use [145, 146], as well as how large the colorful block should be, color

is beneficial for people without visual impairment and is critical to assess for those with visual impairment.

Determining how to use colors and categorize colors would be a beneficial step forward for a future work.

Any future work should also take into account people with colorblindness and other visual impairments.

The results are at least suggestive that block-based programming environments should rethink the

open canvas idea in favor of block alignment to a left-margin (for left-to-right languages). Predominantly

horizontal scrolling was viewed negatively by novices and professionals alike. Programming environments

with a forced horizontal scroll, such as Lego Mindstorms [147] and Scratch Jr. [148], should study this

finding further. Their results may be different because they work with the very young, but so far as we can

tell from the literature, if this is effective for such students, the anecdotal claims about it in the literature

are not terribly convincing. If anything, allowing blocks to be randomly placed on the palette and still be

executed with the rest of the code seems detrimental and should be further tested. Keeping blocks aligned

to a side margin and maintaining a vertical, evenly spaced alignment may also have transfer of learning

impacts.

Distinctive block shapes were rated positively to task completion across the board for novices, but it

was split for professionals. While we found no impact for correctness, the benefits of block shapes were

circumspect when testing it against color versus grayscale for professionals. This attribute needs to be

studied further. Overall, the “text, punctuation, and symbols” attribute was rated as helpful across all

groups, M = 4.74, SD = 1.27, which indicates that block shapes do not replace the need for carefully

considering the verbiage on the blocks.

The lack of comments and lack of line numbers were viewed as detrimental by novices and professionals

alike. While blocks may seem more simple to read and understand at face value, having the abilities

to comment and reference lines are generally considered to be beneficial and to be best practices for

programming. We want to be clear that novice and professional opinion is just that and nothing more.

Thus the evidence here does suggest that this was the opinion in the context of our sample, but this is not

sufficient to guarantee generalizability.

3.3.8 Generalizability

This study encompassed participants ranging from novices to professionals. All participants completed

high-school at a minimum, up through some of whom had a PhD. Professionals were those who had in the

49

past or currently are employed in jobs where programming is at least a partial, if not total, aspect of their

professional work. Despite these factors, we cannot claim broad generalizability to adults of varying skill

levels. Additionally, it cannot generalize K–12 students due to the exclusion of that group; thus future

replications should include this population to discover similarities and differences in this group.

Further, studies involving surveys have natural limitations. First, we are unaware of any study in

the literature that has psychometrically validated the instrument used, including ours. Doing so is a

long process, in part because one could reasonably object to almost any wording chosen in the study,

understandably. Past that, exactly which method to use for validation here is not entirely clear. For

example, typical factor analysis questions correlation because there is an underlying assumption that a

measurement might be measuring a latent variable. Here, however, there is no underlying hypothesis

of a latent variable because each question is intended to draw out whether or not a particular design

constraint exists. For example, line numbers questions “could” correlate with questions about shape, but

just gathering a factor loading misses the point. The lack of psychometric validation is another cause for

push back against potential generalizability.

In a future work, one could hypothetically build a block language with one of these features in, or

out, and then correlate some external metrics to establish whether or not these questions correlate with

real-world performance (e.g., grades in a class, performance in a job). As our goal here was to establish this

survey to put limiting parameters around the scope of potential options to study, we leave such questions

to future work.

3.3.9 Implications

Future research should be conducted in various ways. First and foremost, this study could be conducted

on a larger sample, which would afford the ability to test the metrics against a correctness metric. It is of

limited use when participants rate an attribute as extremely helpful only to discover they had the wrong

answer. Additionally, it would be beneficial to determine timing metrics to determine if attributes rated as

helpful or harmful contributed to solving problems faster or taking longer, respectively. We suspect that

moving to a more sophisticated testing environment, rather than testing within Qualtrics, would help in

this regard. Finally, testing this instrument on K–12 novices would increase the generalizability of these

findings. Ideally, it makes sense to consider “birth to death” as a metaphor, if we really want to understand

when, and where, such results do or do not apply.

50

Chapter 4

Study 2: Investigating a Context-Aware

Palette for a Block-Based Language

4.1 Background

To create block-based programs, learners and programmers need a code editor to write programs and a way

to run them. Due to the graphical nature of block languages, an integrated development environment (IDE)

is a helpful, if not required, resource. IDEs are commonly used by programmers to perform their primary

function of developing code in any type of programming languages, so this study leverages the experience

participants gained from using programming IDEs. IDEs typically consist of, at a minimum, a source code

editor, build and run capabilities, and a debugger all bundled into one interface. They also often contain

other capabilities, such as a source code revision control, class explorer, static code analysis, and code

completion as highlighted by Tran [149], to help programmers write code more quickly and effectively. Lin

et al. [140] found that block-based IDEs have up to 24 categories of blocks, some of which employ nesting

categories in an attempt to not overwhelm users with too many categories. None were cited as having a

context-aware palette of blocks, nor did they state what additional capabilities they had, if any.

These capabilities are called affordances, in Gaver’s [150] terminology, which was adapted from Nor-

man [151], on human computer interaction (HCI). In the physical world, a vertical door handle implies the

affordance of pulling it open, whereas a vertical bar on an exit door implies the affordance of pushing it

open. Perceptible affordances offer a direct link between a person’s perception and the action they take,

but hidden affordances and false affordances limit or hinder a person’s ability to effectively use the soft-

51

ware. For a context-aware palette in an IDE, a perceptible affordance would offer information about what

actions could be taken with each element of the palette, such as blocks being dragged from the palette into

the editor. Affordances can be auditory in nature as well, such as a defined noise for errors, which could

improve accessibility. In Gaver’s treatise on technology affordances in HCI, the suggestion is to focus on

the interaction between technologies and users to assess the strengths and weaknesses of the affordance in

order to design software that will assist users.

Xia et al. [152] found that developers spent 24.8% of time in navigation tasks (using the IDE, finding

code, etc.) and only 6.4% of their time actually writing code. Since developers spend nearly four times

the amount of time working with the IDE rather than writing code in the IDE, having the right tools,

features, and capabilities may be of benefit according to the available data. Additionally, as discussed

previously, Dwyer et al. [87] concluded that their block-based IDE itself created sources of information and

misinformation for users; thus, they suggested researchers should consider what visuals and capabilities

should be provided in a block-based IDE.

4.2 Methods

4.2.1 Hypotheses

In pursuit of assessing developers’ perceptions of IDE tools that are beneficial, we formulated the following

null hypotheses:

1. Professionals and novices will consider all tools to provide the same helpfulness.

2. Professionals and novices will want the same tools regardless of the scenario.

3. Professionals and novices will have the same viewpoint on the helpfulness of the tools.

4.2.2 Inclusion and Exclusion

Recruitment to this study was limited to adults either actively enrolled in a computer science major or

minor at the University of Nevada, Las Vegas or adults who are or were professional programmers. Potential

participants had the option to consent to be in the study after they opened the link to the study. If they

consented to be in the study, demographic questions were asked initially to ascertain each participant’s

educational attainment, current level if still in college, any professional history writing code, and which

programming languages were previously used to write code. The demographic questions did not have any

52

Table 4.1: Participants
Group Classification Per Classification Group Total

Professional Not Enrolled 7 21
Graduate Program 2
Senior 6
Junior 5
Sophomore 1

Late Stage Graduate Program 1 76
Novice Senior 38

Junior 37

Early Stage Sophomore 14 26
Novice First-Year 12

influence on participant inclusion or exclusion from the study. These data were collected solely for the

purpose of determining how each participant’s level of experience (early-stage learner, late-stage learner,

professional) affected their responses. The only data included in the study was from participants who

consented to be in the study, answered all of the demographics questions, and answered all of the study

questions. In any other case, the participant data was excluded from the study.

4.2.3 Participant Characteristics

As in the first study, both professional programmers and university students were recruited in order to

analyze potential differences in responses. Professional programmers were solicited via direct email while

University students were recruited from the authors’ institution’s undergraduate-level computer science

program. If students had professional experience listed as “Never employed to write code as a primary

job function, but it was a periodic part of the job”, they were included in the late-stage learner category

regardless of their classified year. If students chose any other type of professional experience, they were

categorized as professionals.

4.2.4 Sampling Procedures

Participants were solicited via email across seven different companies. Additionally, participants were

recruited from four undergraduate-level university courses at the authors’ institution. Solicited participants

then had the option to self-select into the study. There were a total of 123 participants, 21 of which were

classified as professionals and 102 of which were classified as learners. Early-stage learners, first-years,

and sophomores comprised of 26 of the learners and late-stage learners, juniors, and seniors formed the

53

remaining 76 learners. Table 4.1 shows a full breakdown. This classification was created from the self-

reported responses to the demographics questions. One question asked if the individual was currently

enrolled in a degree program, and if so at what level, and another question asked if they were then

currently or had ever previously been employed to write code as all or part of their job function. If a

participant conformed to both categories, they were categorized in the professional group. All participants,

regardless of categorization, performed the same tasks in the same manner for this study.

4.2.5 Sample Size, Power, and Precision

Similar to the previous study, we are unaware of an existing similar study, so there was no direct way to

calculate our required sample size, power, or precision. Our approach was to undertake a series of pilot

studies to provide participant feedback on the study. None of the participants in these pilots were included

nor reported in this study. For the first pilot, we started with a small sample size, then roughly doubled

from one major pilot version to the next. While the pilot data is consistent with what is reported here,

it is not directly comparable due to changes in questions and experimental design. We highlight it in this

section because it was an important part of our process in creating the final instrument.

4.2.6 Measures and Covariates

The instrument displayed a snippet of code in the block-based Quorum programming language along with

a prompt of the goal that the in-progress code snippet was intended to perform. The participant was asked

to imagine they were completing the goal of the given programming task along with being shown a green

arrow of where their cursor was active in the code.

Participants were given 16 potential types of tools, which could alternatively be called features, function-

alities, or affordances, that could be displayed to help them with completing the programming challenge.

Participants were asked to categorize each of these tools as either “Helpful” or “Not Helpful.” They were

then required to rank the tools they had categorized as “Helpful,” with “1” being the “most helpful” tool in

each given context.

Since the tasks were unrelated, and their context was critical for the purpose of this study on a context-

aware IDE, each task was statistically assessed individually. The 16 types of tools are presented in table 4.2

in the order in which they appear in the instrument.

54

Table 4.2: IDE Potential Types of Tools
Tool Type

1 Project Files/Structure
2 Source Control
3 Class Name/Library
4 Class Short Description
5 Blocks of In-Scope Variables
6 Alert About What Problems
7 Link to Class Documentation
8 Blocks to Create New Variables
9 Blocks for Control
10 Blocks for Conditionals
11 Blocks of All Functions in the Class
12 Blocks for I/O
13 Blocks to Create New Blocks
14 Blocks for Exiting
15 Blocks to Import Additional Libraries
16 Example Code

4.2.7 Data Collection

Qualtrics was again utilized to administer the study instrument. All participants were presented the same

set of questions and tasks. Participants were required to consent to participate in the study, and were then

asked demographic questions and presented an explanation of the purpose and particulars of the study.

They were then asked a series of questions: one starting with a free-form inquiry about what the IDE

could suggest to help them, six questions about sorting and ranking predefined helper-tools, and then a

final free-form question about what the IDE could suggest to mirror the first question.

4.2.8 Quality of Measurements

Study development consisted initially of creating multiple different study design ideas to the research group,

where we went through multiple iterations with review. We then solicited experiential pilot-participant

feedback with modifications to improve subsequent study prototypes. While we initially considered showing

various potential renderings of suggestions, we determined that there were two main issues with this

approach. First, the number of possible options for display could divide participants into too many groups

to perform a feasible study. Second, pilot feedback indicated that the rendering anchored participants

to a certain viewpoint, which seemed to taint the results. Iterative pilot study results led us to present

participants with a programming prompt along with a list of potential suggestions to sort and rank into

55

Figure 4.1: Categorization and Rank Questions
Question Line of Code Where Arrow

Points

1 Imagine you’ve been tasked to
write a small function that will
take in an integer array, prints
out the even integers, and then
returns an array of the even in-
tegers to the caller.

use Libraries.Containers.Array Anywhere on the
line

2 Same as above action PrintEven(Array<integer>
array)

Anywhere on the
line

3 Same as above if At the end of the
line to complete
the if statement

4 Imagine you’ve been tasked to
write a small function that takes
in two integers and adds them
together.

Add(At the end of the
line to complete
the function call

5 Imagine you’re doing some sta-
tistical analysis, and need to
load data into a dataframe.

DataFrame frame Anywhere on the
line

6 Imagine you’re doing some sta-
tistical analysis, and you need to
display the chart or make some
edits to the chart.

chart: At the end of the
line to complete
the object refer-
ence

helpfulness categories. While we went through several small scale pilots to arrive at this instrument, this

is the first time the full tool has been conducted at scale.

4.2.9 Instrumentation

The ad hoc instrument consisted of eight questions: two were free-form text and six consisted of categorizing

and ranking (full instrument is in appendix B). The instrument first broadly contextualized the study, and

then asked the first free-form text question. Next came the six categorization and ranking questions.

Finally, the participants were asked to input a free-form text answer to a question that mirrored the first

question. All study participants received the same questions in the same order. The six categorization and

rank questions are shown in table 4.1.

56

4.2.10 Masking

Participants did not know the study design nor the fact that there was only a single group either prior

to nor during the study. Participants self-reported their status as student or non-student, any relevant

student classification, and prior job experience, but they did not know if or how these metrics would be

analyzed.

4.2.11 Psychometrics

First, we are unaware of any study using a psychometrically-validated instrument to examine context-aware

integrated development environments (IDEs), including ours. Psychometrically validating an instrument is

a lengthy process, for the reasons stated previously. We initially sought out similar studies that have been

psychometrically validated by task-technology fit theory (TTF). To identify relevant studies, a search was

conducted in the Scopus, IEEE, and ACM research databases. They were chosen due to the large number

of journals and conferences covering a wide array of disciplines, and they are fundamental to computer

science research. To be considered a relevant study, it had to be published in a peer-reviewed journal or

conference article applying TTF theory and resulting in a psychometrically-validated instrument. No such

instruments nor close analogues were found.

This cross-sectional observational study was created to gather data on how professionals and novices

think about the importance of IDE tools across different scenarios when programming. While the study

asked participants to think about what tools they might need in a given scenario, the participants were not

asked to write any code to implement the given scenario. They were only given the scenario, a snippet of

code, and told where the cursor was placed to provide a frame for their thoughts. All participants received

the same scenarios in the same order regardless of their answers to the demographics questions.

Participants were asked to categorize types of tools that an IDE could display in the left-hand pane.

They were asked to categorize each tool as either “Helpful” or “Not Helpful” in the given context of each

question. Participants were then asked to rank the items they placed into the “Helpful” category with the

first ranking being the most helpful in that context. While we did not initially know which tools would

be ranked as most important, through the piloting process, we were able to narrow down the tool list to

the 16 tools we chose to be in the study. However, it is possible that some important tools were missing

from the study. Since this is an initial study on the subject, our aim was to develop a better picture of the

initial tools, or affordances, that would provide the most assistance to programmers in the initial version.

57

As our goal was to establish this survey for such a purpose, we leave psychometric validation and TTF

theory about IDEs to future work.

4.2.12 Participant Selection

The goal with participant selection was to ensure we had representation from various experience groups.

While the participation rate per group was not evenly distributed, as can be seen in table 4.1, we were able

to recruit participants from first-year of college through graduate school as well as professional program-

mers. Subsequent studies could focus more closely on certain experience groups from this study or, more

importantly, other experience groups such as K–12 learners.

4.2.13 Data Diagnostics

Participants were limited to adults (age 18+) either in a computer science program at the university level or

professional programmers. All participants who completed the entire instrument were included in the data

analysis. The majority of participants whose data was not included never answered the consent question nor

any of the demographics questions; one participant selected "No, I Do Not Accept" to the consent question.

The participants that consented to the study and answered the demographics questions were asked eight

total questions with multiple sub-questions. Qualtrics required participants to complete each task before

moving on to the next task. Inside of each task, each tool had to be categorized as "helpful" or "not

helpful" in order for participants to move to the next question. Abandoned and incomplete assessments

were excluded from the diagnostics, so sixteen participants that started answering the study but did not

complete it were excluded.

4.2.14 Analytic Strategy

In this study, each scenario was considered to be independent. Participants were directed to categorize

tools as helpful or not helpful, and we coded the selection of "not helpful" to zero. They were then asked

to rank the helpful items from most helpful (first = 1) to least helpful (last). In the analysis, we did a

reverse weighting of tools where the most helpful tool received the highest weight (16), the second most

helpful received the next highest weight (15), and so on. This differentiated the most helpful tools from

the tools that were categorized as "not helpful", which were assigned a weight of zero. Weighting the tools

this way did not result in weights from 16 down to one; only the tools that were categorized as helpful

58

received weights. Thus, if a participant only rated three tools as helpful, those three tools would receive

weights of 16, 15, and 14 in order and then the rest of the tools, which were categorized as "not helpful",

received a weight of zero. We performed an independent samples ANOVA on each scenario with the tool

type and the participants’ experience level as interaction terms to determine if these affected the resulting

weight. We also took means of the participants’ tool weightings and ranked the tools’ mean weight per

scenario. In the analysis below, a table reporting the means and standard deviation is presented for each

tool in order and the top three mean weights are bolded for each scenario.

With the data that is reported in the sections below, there is a wide variance for the weightings of the

tools. In order to visually represent data with a wide variance, we created Tufte box plots, to visually assess

the weightings. An example from the online documentation [153], figure 4.2 is provided to help explain

Tufte plots. In Tufte plots, the point signifies the median weight, the empty space is the interquartile range,

and the lines are the whiskers. Compared to a traditional box and whisker plot, Tufte visualization helps

to highlight the median and differentiate the weightings, since there is no box to overcrowd the visuals.

In the example in figure 4.2, the median for “factor 4” is approximately 26, the median for for “factor 6”

is approximately 20, and the median for “factor 8” is approximately 15. An important aspect to keep in

mind when viewing the Tufte box plots in the sections below is the point where the median is drawn. If

the point is on the x-axis, then it means over half of the programmers categorized the tool as "not helpful"

in the given scenario, which lowers the perceived value of the tool in that scenario.

4.3 Results

4.3.1 Participant Flow

Participants were recruited and took part in the study over a 35-day period in January and February,

2024. Table 4.1 lists the participant tallies per experience group, for a total of 123 participants across

all of the experience levels. The study only allowed participants to use a desktop or laptop computer, so

participants who attempted to access the instrument on mobile were notified it was not available and the

attempt ended. A total of 333 participants initially attempted to take part in the study. One participant

did not consent to take the study. A total of sixteen participants started the study but did not complete

it. The remaining 123 participants completed all eight questions in the study, and all data they provided

was analyzed for this work.

59

Figure 4.2: Tufte Box Plot Example

60

4.3.2 Recruitment

Recruiting for professional participants who were not enrolled in college was done via four emails in the

first two weeks of January, 2024. University-level participants were recruited in person on four days at five

total classes during the last week of January and the first full week of February. Responses started after

the first email response and continued into the second full week of February. There was no follow-up to

the same recruitment group after the initial recruitment period.

4.3.3 Statistics and Data Analysis

We utilized a mixed two-way analysis of variance (ANOVA) to analyze each scenario with the within-

subjects predictor of tool type and between-subjects predictor of experience along with the requisite inter-

action term. The models estimate the relationship between predictors to arrive at the outcome variable,

weight of the tool. In each case, we ensured the assumptions of a two-way ANOVA were met prior to

running the ANOVA. When running the ANOVA, we chose to use Type II, which Langsrud [144] finds to

be preferable to Type III for such analysis.

One of the fundamental assumptions in the ANOVA with a within-subjects procedure is that of spheric-

ity, which checks whether the variance/covariance matrix of the observed data from the Repeated Measures

follows a particular pattern. If Mauchly’s test of sphericity indicates the assumption of sphericity is vio-

lated, we apply a Greenhouse-Geisser correction to the degrees of freedom used to calculate the F-ratio.

These corrections often increase the p-value, so significance is reported again. Statistics were conducted

and charts were created using RStudio Version 2023.12.1+402.

61

Question 1: Use Statement

Figure 4.3: Question 1: Which Tools Would Be Helpful?

Table 4.3: Question 1: Use Statement Means/SD

Rank Tool M SD

1 Example Code 10.22 5.89
2 Blocks for Conditionals (If / Else, etc) 8.87 6.06
3 Blocks for Control (Repetition / Loops) 8.80 6.08
4 Alert About What Problems Mean 8.29 6.43
5 Blocks to Create New Variables 8.24 5.68
6 Blocks of In-Scope Variables 7.64 5.95
7 Blocks for I/O (Print, Input, Clicks, etc) 7.33 5.66
8 Blocks for New Class/Funct 6.82 6.12
9 Blocks for Exiting (Return, Continue, Break, etc) 6.76 5.52
10 Blocks of All Functions in the Class 6.59 5.95
11 Class Name/Library 6.12 6.17
12 Class Short Description 4.96 6.07
13 Link to Class Documentation 4.71 6.10
14 Blocks to Import Additional Libraries (use) 4.18 5.75
15 Project Files / Structure 4.03 5.71
16 Source Control 2.40 4.63

62

The ANOVA for the scenario where the cursor is on a “use” statement is statistically significant for tool

F (15,1815) = 15.75, p < .001, generalized Eta squared (η2G) = .111, which demonstrates that participants

rated the helpfulness of the tools significantly differently. Additional significance was found in experience

F (1,121) = 4.59, p = .034, η2G = .001 and the tool:experience interaction F (15,1815) = 2.02, p = .012,

η2G = .016. The generalized Eta squared indicated the effect size of tool to be 11.1% of the model, (η2G

= .111). The effect sizes of experience and the interaction of tool:experience are small at 0.1% and 1.6%

respectively.

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for the

tool:experience interaction (W = .20, p < .001), so a Greenhouse-Geiser correction was applied (ϵ = 0.55).

The tool:experience interaction was still found to be significant (p = .036). The mean weights for each

of the tools is in table 4.3. The top three mean weights in this scenario are “Example Code”, “Blocks for

Conditionals”, and “Blocks for Control.” In figure 4.5, a rendering of the top tools is shown as an example.

The top-ranked tools not shown were excluded due to the inability to display them at this stage, such as

“Alert About What Problems Mean,” because there are no errors. A context-aware palette would not show

inconsequential information.

63

Figure 4.4: Question 1: Code Snippet Displayed to Participant

Figure 4.5: Question 1: Potential Partial Palette Based on Weights

64

Question 2: Syntax Error

Figure 4.6: Question 2: Which Tools Would Be Helpful?

Table 4.4: Question 2: Syntax Error Means/SD

Rank Tool M SD

1 Alert About What Problems Mean 15.09 2.44
2 Example Code 12.04 4.99
3 Blocks of In-Scope Variables 7.54 6.29
4 Link to Class Documentation 5.71 6.35
5 Blocks for I/O (Print, Input, Clicks, etc) 5.37 5.88
6 Blocks for Control (Repetition / Loops) 5.32 6.13
7 Blocks for Exiting (Return, Continue, Break, etc) 5.06 5.70
8 Blocks for Conditionals (If / Else, etc) 4.80 5.81
9 Blocks to Create New Variables 4.67 5.80
10 Class Short Description 4.23 6.04
11 Class Name/Library 3.97 5.85
12 Source Control 3.64 5.68
13 Blocks of All Functions in the Class 3.63 5.49
14 Project Files / Structure 2.63 5.01
15 Blocks to Import Additional Libraries (use) 2.57 4.64
16 Blocks for New Class/Funct 2.48 4.89

65

The ANOVA for the scenario where the cursor is on a red block, which indicates a syntax error, is

statistically significant for tool F (15,1815) = 49.34, p < .001, η2G = .271, which demonstrates that par-

ticipants rated the helpfulness of the tools significantly differently. The generalized Eta squared indicated

the effect size of tool to be relatively large at 27.1% of the model, (η2G = .271). No other significance was

found in this scenario.

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for the tool

type (W = .01, p < .001), so a Greenhouse-Geiser correction was applied (ϵ = 0.55). The tool type was

still found to be significant (p < .001). The mean weights for each of the tools is in table 4.4. The top three

mean weights in this scenario are “Alert About What Problems Mean”, “Example Code”, and “Blocks of

In-Scope Variables.” In figure 4.8, a rendering of the top tools is shown as an example. Only the top-ranked

tools with a median higher than zero are rendered, and there are no “In Scope Variables” in this example,

which is why there are only two tools in the example palette.

66

Figure 4.7: Question 2: Code Snippet Displayed to Participant

Figure 4.8: Question 2: Potential Partial Palette Based on Weights

67

Question 3: If Statement

Figure 4.9: Question 3: Which Tools Would Be Helpful?

Table 4.5: Question 3: If Statement Means/SD

Rank Tool M SD

1 Blocks for Conditionals (If / Else, etc) 11.27 6.04
2 Blocks of In-Scope Variables 11.16 5.72
3 Example Code 10.00 6.00
4 Blocks for Exiting (Return, Continue, Break, etc) 7.29 6.34
5 Blocks to Create New Variables 6.89 6.51
6 Blocks for Control (Repetition / Loops) 6.72 6.44
7 Blocks for I/O (Print, Input, Clicks, etc) 6.28 6.27
8 Blocks of All Functions in the Class 4.54 6.00
9 Alert About What Problems Mean 4.07 6.01
10 Link to Class Documentation 2.82 5.28
11 Class Short Description 2.74 5.15
12 Source Control 2.59 4.97
13 Project Files / Structure 2.41 4.99
14 Class Name/Library 2.28 4.71
15 Blocks for New Class/Funct 2.23 4.82
16 Blocks to Import Additional Libraries (use) 1.48 3.86

68

The ANOVA for the scenario where the cursor is inside a block for the user to type the conditions

for the “if” statement is statistically significant for tool F (15,1815) = 44.09, p < .001, η2G = .252,

which demonstrates that participants rated the helpfulness of the tools significantly differently. Additional

significance was found in experience F (1,121) = 18.78, p < .001, η2G = .011. The generalized Eta squared

indicated the effect size of tool preference to be relatively large at 25.2% of the model, (η2G = .252). The

effect size of experience is small at 1.1% of the model (η2G = .011).

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for the

tool preference (W = .04, p < .001), so a Greenhouse-Geiser correction was applied (ϵ = 0.68). The tool

preference was still found to be significant (p < .001). The mean weights for each of the tools is in table 4.5.

The top three mean weights in this scenario are “Blocks for Conditionals”, “Blocks of In-Scope Variables”,

and “Example Code.” In figure 4.11, a rendering of the top tools is shown as an example. All of the

top-ranked tools with a median higher than zero are rendered in the example.

69

Figure 4.10: Question 3: Code Snippet Displayed to Participant

Figure 4.11: Question 3: Potential Partial Palette Based on Weights

70

Question 4: Add Function

Figure 4.12: Question 4: Which Tools Would be Helpful?

Table 4.6: Question 4: Add Function Means/SD

Rank Tool M SD

1 Blocks of In-Scope Variables 12.20 5.64
2 Example Code 10.33 6.40
3 Blocks to Create New Variables 7.98 7.08
4 Blocks of All Functions in the Class 6.15 6.82
5 Alert About What Problems Mean 5.35 6.57
6 Blocks for I/O (Print, Input, Clicks, etc) 4.89 6.52
7 Link to Class Documentation 3.11 5.44
8 Blocks for Exiting (Return, Continue, Break, etc) 3.08 5.36
9 Class Short Description 3.07 5.37
10 Class Name/Library 2.98 5.37
11 Blocks for Conditionals (If / Else, etc) 2.94 5.32
12 Blocks for New Class/Funct 2.51 5.20
13 Project Files / Structure 2.49 4.95
14 Blocks for Control (Repetition / Loops) 2.32 4.77
15 Source Control 2.16 4.71
16 Blocks to Import Additional Libraries (use) 1.77 4.45

71

The ANOVA for the scenario where the cursor is inside a block for the user to fill out the parameters in

the "Add()" function call is statistically significant for tool F (15,1815) = 38.03, p < .001, η2G = .223. No

other significance was found. The generalized Eta squared indicated the effect size of tool to be relatively

large at 22.3% of the model, (η2G = .223).

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for tool type

(W = .05, p < .001), so a Greenhouse-Geiser correction was applied (ϵ = 0.71). The tool type was still

found to be significant (p < .001). The mean weights for each of the tools is in table 4.6. The top three

mean weights in this scenario are “Blocks of In-Scope Variables”, “Example Code”, and “Blocks to Create

New Variables.” Figure 4.14 shows a rendering of the top tools from this example. The top-ranked tools

with a median higher than zero are rendered in the example. In this context, “Blocks of In-Scope Variables”

was not rendered for clarity because there are no existing variables in scope in this example. In cases where

there are variables in-scope, that tool should be displayed right after “Example Code.”

72

Figure 4.13: Question 4: Code Snippet Displayed to Participant

Figure 4.14: Question 4: Potential Partial Palette Based on Weights

73

Question 5: Dataframe

Figure 4.15: Question 5: Which Tools Would be Helpful?

Table 4.7: Question 5: Create Dataframe Means/SD

Rank Tool M SD

1 Example Code 9.80 6.15
2 Project Files / Structure 8.58 6.84
3 Class Name/Library 7.87 6.76
4 Link to Class Documentation 7.80 6.59
5 Class Short Description 6.13 6.64
6 Blocks to Import Additional Libraries (use) 5.85 6.41
7 Blocks of In-Scope Variables 5.75 6.18
8 Source Control 5.72 6.51
9 Blocks to Create New Variables 5.50 6.15
10 Blocks of All Functions in the Class 4.91 6.12
11 Blocks for New Class/Funct 4.47 5.99
12 Alert About What Problems Mean 4.40 6.01
13 Blocks for I/O (Print, Input, Clicks, etc) 4.19 6.07
14 Blocks for Control (Repetition / Loops) 3.05 5.28
15 Blocks for Conditionals (If / Else, etc) 2.89 5.10
16 Blocks for Exiting (Return, Continue, Break, etc) 1.82 4.01

74

Figure 4.16: Question 5: Code Snippet Displayed to Participant

Figure 4.17: Question 5: Potential Partial Palette Based on Weights

The ANOVA for the scenario where the cursor is on a “Dataframe” instantiation is statistically significant

for tool F (15,1815) = 16.05, p < .001, η2G = .109. Additional significance was found in the tool:experience

interaction F (15,1815) = 3.48, p < .001, η2G = .026. The generalized Eta squared indicated the effect size

of tool to be 10.9% of the model, (η2G = .109). The effect size of the tool:experience interaction is small

at 2.6%.

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for tool type

(W = .02, p < .001) nor the tool:experience interaction (W = .02, p < .001), so a Greenhouse-Geiser

correction was applied (ϵ = 0.65). The tool type was still found to be significant (p < .001). Likewise,

the tool:experience interaction was also found to be significant (p < .001). The mean weights for each of

the tools is in table 4.7. The top three mean weights in this scenario are “Example code”, “Project Files

/ Structure”, and “Class Name/Library.” In figure 4.17, a rendering of the top tools is rendered for this

example. The top-ranked tools with a median higher than zero are rendered in the example. The “Project

Files / Structure” is rendered as the “Projects” tab.

75

Question 6: Chart Display

Figure 4.18: Question 6: Which Tools Would be Helpful?

Table 4.8: Question 6: Chart Display Means/SD

Rank Tool M SD

1 Example Code 11.15 5.62
2 Blocks of In-Scope Variables 7.80 6.80
3 Class Name/Library 6.34 6.81
4 Blocks of All Functions in the Class 6.20 6.92
5 Link to Class Documentation 6.09 6.49
6 Blocks for I/O (Print, Input, Clicks, etc) 5.67 6.74
7 Project Files / Structure 5.55 6.66
8 Class Short Description 5.35 6.36
9 Alert About What Problems Mean 4.65 6.18
10 Blocks to Create New Variables 3.89 5.70
11 Blocks to Import Additional Libraries (use) 3.80 5.67
12 Source Control 3.58 5.76
13 Blocks for New Class/Funct 3.23 5.64
14 Blocks for Conditionals (If / Else, etc) 2.63 5.18
15 Blocks for Control (Repetition / Loops) 2.19 4.75
16 Blocks for Exiting (Return, Continue, Break, etc) 2.14 4.84

76

The ANOVA for the scenario where the cursor is on line to display a “chart” is statistically significant

for tool F (15,1815) = 19.14, p < .001, η2G = .126. Additional significance was found in the tool:experience

interaction F (15,1815) = 5.07, p < .001, η2G = .037. The generalized Eta squared indicated the effect size

of tool to be 12.6% of the model, (η2G = .126). The effect size of the tool:experience interaction is small

at 3.7%.

When analyzing Mauchly’s test, the data indicated the sphericity assumption was not met for tool type

(W = .04, p < .001) nor the tool:experience interaction (W = .04, p < .001), so a Greenhouse-Geiser

correction was applied (ϵ = 0.68). The tool type was still found to be significant (p < .001). Likewise,

the tool:experience interaction was also found to be significant (p < .001). The mean weights for each of

the tools is in table 4.8. The top three mean weights are “Example code”, “Blocks of In-Scope Variables”,

and “Class Name/Library.” In figure 4.20, a rendering of the top tools is rendered for this example. The

top-ranked tools with a median higher than zero, of which there were only two, are rendered in the example.

4.4 Discussion

4.4.1 Support of Original Hypotheses

Through this study, we gained insight into what IDE tools might be helpful in an array of scenarios, at

least for the purposes of creating an initial data-driven prototype. Some of the findings are more applicable

to IDEs broadly rather than being specific to block languages, which we found interesting.

4.4.2 Hypothesis 1

H0: Professionals and novices will consider all tools to provide the same helpfulness.

The helpfulness of various IDE tools was rated significantly differently with a strong effect size, thus we

reject the null hypothesis 1 in favor of the alternative hypothesis: there is a difference in which tools are

helpful or not regardless of the scenario. This finding was supported for both novices and professionals.

When analyzing the mean weights, we see that some tools are generally helpful across various scenarios.

The tools that are ranked most often in the top three while never appearing in the bottom three are

“Example Code” and “Blocks of In-Scope Variables.” In addition, the “Alert About What Problems Mean”

and “Blocks to Create New Variables” are never in the bottom three rankings. Overall, this indicates these

tools are generally helpful for programming tasks. We additionally see some tools as not helpful in most

use cases. The tools “Blocks for Exiting,” “Blocks to Import Additional Libraries,” and “Source Control”

77

Figure 4.19: Question 6: Code Snippet Displayed to Participant

Figure 4.20: Question 6: Potential Partial Palette Based on Weights

78

are never rated in the top three tools.

4.4.3 Hypothesis 2

H0: Professionals and novices will want the same tools regardless of the scenario.

Tools were rated significantly differently in each scenario, thus we reject the null hypothesis 2 in favor

of the alternative hypothesis: depending on the scenario, some tools were more useful than others. When

looking across the scenarios as a whole, we recognize some phases of programming.

Question one with the “use statement” represents a typical scenario for the beginning phase of writing

a program. This is a time when the programmer is starting out and needs some early assistance to

put the structure together. In this scenario, the highest ratings were for “Example Code,” “Blocks for

Conditionals,” and “Blocks for Control,” which is unsurprising given that the programmer needs to know

how to begin solving the programming challenge and to begin their programmatic scaffolding. Interestingly,

“Blocks to Create New Variables” was in the top five tools; we expected this tool to be ranked slightly

higher. Additionally “Blocks to Import Additional Libraries” was ranked in the bottom three, although we

expected it to be ranked in the top three. When looking at figure 4.3, we see that the median weights of

most tools are non-zero, which reinforces the idea that the programmers want a variety of tools to begin

their programming tasks. The tools with a zero median, meaning at least half of the developers found

them not helpful, are “Blocks to Import Additional Libraries,” “Class Short Description,” “Link to Docs,”

“Project Files,” and “Source Control.”

When problems arise, such as in the case when there is a red block due a syntax error, programmers

reached for the top two tools to figure out how to fix the error—“Alert About What Problems Mean” and

“Example Code”—which is as we expected. What is interesting is that the third highest-ranked tool was

“Blocks of In-Scope Variables,” which would not affect this situation, but the actual fix for it—“Blocks to

Import Additional Libraries,” namely the array library in this case— was the second-lowest-ranked tool.

In this scenario, the only non-zero medians (as shown in figure 4.6) are the same blocks as the top three

means. This indicates that for an error, over half of the developers found nothing else helpful outside of

figuring out how to fix the error.

In the midst of programming, it is common to write “if statements” as well as create and call functions,

which we tested in questions three and four respectively. In both of these scenarios, “Blocks of In-Scope

Variables” and “Example Code” were ranked in the top three tools. “Blocks for Conditionals” was the top-

ranked tool for the question about “if statements,” which is not surprising considering developers might

79

want to add “else if” and “else statements.” For the add statement, “Blocks to Create New Variables” rounds

out the top three tools. Since in this case the cursor indicated that the user needed to add a parameter, it

makes sense that the programmer would want both the option to use currently in-scope variables and to

create a new one. In figure 4.9, there are seven tools that over half of the programmers rated as helpful: the

top three ranked tools plus “Blocks to Create New Variables,” “Blocks for Control,” “Blocks for Exiting,”

and “Blocks for I/O.” When analyzing the medians in figure 4.12 for the “Add()” function, we see that over

half of the programmers rated only the top three tools as helpful.

The last two scenarios related to dataframes and charts give us an indication of what programmers

need when they encounter what we consider to be an unfamiliar scenario. In both of these scenarios, the

top-ranked tool was “Example Code.” which indicates programmers are simply trying to learn what it is

they are supposed to be doing. In both scenarios, the third-highest-ranked tool was “Class Name/Library,”

but this might be misleading. As shown in figure 4.18 for scenario six, regarding displaying a chart, over

half of the programmers categorized “Class Name/Library” as not helpful. The other top-three tools in

each scenario, respectively, were “Blocks of In-Scope Variables” and “Project Files / Structure.” Looking

at the medians in figure 4.15, we see “Link to Class Documentation” tool was the only other tool selected

as helpful by over half of the programmers for the question about dataframes. In figure 4.18, only the

two top-ranked tools were categorized as helpful by over half of the programmers. Interestingly, in both

scenarios, the three lowest-ranked tools were “Blocks for Control,” “Blocks for Conditionals,” and “Blocks

for Exiting.” These results indicate that programmers did not know how to approach these problems, but

at a high level they had an idea of what they did not need for these scenarios: loops, “if statements,” or

return statements.

4.4.4 Hypothesis 3

H0: Professionals and novices will will have the same viewpoint on the helpfulness of the tools.

Experience level was only significantly different in some of the scenarios, and even when it was, the

effect size was typically less than one percent of the model. This was likely due in part to the small

sample of professional programmers and should be considered for a future study. Considering there was

no significant difference in most scenarios, we fail to reject the null hypothesis 3.

80

Table 4.9: Count of Times Each Tool Ranks in the Top or Bottom Tools Across All Scenarios
Tool Type Ranked in Top 3 Ranked in Bottom 3

1 Project Files/Structure 1 2
2 Source Control 0 2
3 Class Name/Library 2 1
4 Class Short Description 0 1
5 Blocks of In-Scope Variables 4 0
6 Alert About What Problems Mean 1 1
7 Link to Class Documentation 0 0
8 Blocks to Create New Variables 1 0
9 Blocks for Control 1 3
10 Blocks for Conditionals 2 2
11 Blocks of All Functions in the Class 0 0
12 Blocks for I/O 0 0
13 Blocks to Create New Blocks 0 2
14 Blocks for Exiting 0 2
15 Blocks to Import Additional Libraries 0 4
16 Example Code 6 0

4.4.5 Similarity of Results

As discussed previously, Dwyer et al. [87] and Gaver [150] recommended researchers to consider all visual

cues and affordances when creating block-based IDEs. Mason and Cooper [154] report that having extra

options, tools, or affordances available in an IDE reduces performance, especially in the learning environ-

ment, even if they are not used. This in turn causes novices’ perception that programming in learning

and professional environments is more difficult. Essentially, they state that novices benefit from simplified

environments. The current study provides quantitative analysis to expand upon these recommendations;

in each example a minimal context-aware palette is provided.

4.4.6 Interpretation

This study aimed to quantify which IDE tools would be helpful or not helpful in various scenarios. Table 4.9

shows how many times each tool was ranked in the top three or bottom three. Table 4.11 shows the number

of times each tool had a median greater than zero, meaning that more than half of the programmers

categorized the tool as helpful for the scenario. Many times, the median is zero, which means that over

half of the programmers categorized the tool as not helpful for the given scenario. Three tools were not

found to be helpful by more than half of the developers in any of the scenarios: “Class Short Description,”

“Source Control,” and “Blocks to Import Additional Libraries.”

81

Table 4.10: Sum of the Means
Rank Tool Mean Sum

1 Example Code 63.54
2 Blocks of In-Scope Variables 52.09
3 Alert About What Problems (Red Blocks) Mean 41.85
4 Blocks to Create New Variables 37.18
5 Blocks for I/O (Print, Input, Clicks, etc) 33.72
6 Blocks for Conditionals (If, Else, etc) 33.41
7 Blocks of All Functions in the Class 32.03
8 Link to Class Documentation 30.24
9 Class Name/Library 29.56
10 Blocks for Control (Repetition, Loops) 28.40
11 Class Short Description 26.47
12 Blocks for Exiting (Return, Continue, Break, etc) 26.15
13 Project Files / Structure 25.69
14 Blocks to Create New Blocks (Class, Function, etc) 21.74
15 Source Control 20.09
16 Blocks to Import Additional Libraries (use) 19.64

Table 4.11: Tool Median Weight Greater Than Zero
Rank Tool Q1 Q2 Q3 Q4 Q5 Q6 Total

Use Error If Add() Datafrm Chart

1 Example Code ✓ ✓ ✓ ✓ ✓ ✓ 6
2 Blocks of In-Scope Variables ✓ ✓ ✓ ✓ ✓ 5
3 Alert About What Problems Mean ✓ ✓ 2
4 Blocks to Create New Variables ✓ ✓ ✓ 3
5 Blocks for I/O ✓ ✓ 2
6 Blocks for Conditionals ✓ ✓ 2
7 Blocks of All Functions in the Class ✓ 1
8 Link to Class Documentation ✓ 1
9 Class Name/Library ✓ ✓ 2
10 Blocks for Control ✓ ✓ 2
11 Class Short Description 0
12 Blocks for Exiting ✓ ✓ 2
13 Project Files / Structure ✓ 1
14 Blocks to Create New Blocks ✓ 1
15 Source Control 0
16 Blocks to Import Additional Libraries 0

Total per scenario 11 3 7 3 4 2

82

When assessing across scenarios, we discover that certain tools regularly emerge as most helpful regard-

less of scenario. The “Example Code” tool was ranked in the top three tools and was categorized as helpful

by over half of the programmers in every scenario, so having a way to display or link to example code would

be beneficial to programmers. The “Blocks of In-Scope Variables” tool was ranked in the top three tools

in four of the six scenarios, so in the majority of cases, providing this tool would be beneficial for writing

programs. This tool was only ranked outside the top three on the “use statement” (question one), likely due

to the fact that programmers could recognize there were not yet any local scope variables, but it was still

ranked as broadly helpful in that scenario according to the median. For the dataframe question, that same

tool was categorized as not helpful by over half of the developers, which is likely because “dataframe” is

an unknown term or programming scenario for many programmers, hence they ranked tools that provided

them more information highest in that scenario. Neither of these tools (“Example Code” nor “Blocks of

In-Scope Variables”) were ever ranked in the bottom five rankings in any scenario, which indicates they

would be helpful across most programming activities. These findings are reinforced if we look at table 4.10,

where these tools are the top two sums by weight. These tools are of high benefit to users and should

be included persistently in the context-aware palette with prominent placement when their existence is

possible. (Cases in which their existence is not possible include a newly opened blank file.)

Conversely, we discovered some tools are consistently in the bottom of the rankings. As described above,

“Class Short Description,” “Source Control,” and “Blocks to Import Additional Libraries” were never rated

as helpful by over half of the programmers in any scenario. The “Source Control” tool was ranked in the

bottom three twice, and it was ranked in the bottom five for all but one of the scenarios. The dataframe

question was the only one in which this tool did not appear in the bottom five rankings. Programmers

also ranked the tool “Blocks to Import Additional Libraries” in the bottom three tools in four of the six

scenarios. None of these tools were ever ranked in the top three in any scenario, which collectively indicates

they would not be broadly helpful across all programming activities. These findings are reinforced if we

look at table 4.10, where two of the three tools are at the bottom by mean sums. These tools are of little

benefit to users and should likely not be included in the context-aware palette.

Additional analysis is required to make recommendations for a context-aware palette. The rankings

with corresponding weights in table 4.10 are one consideration for which tools to adopt in a context-aware

palette. We also analyzed the top three and bottom three rankings in each scenario from table 4.9 and

cross-referenced them with the rankings in the sum of the means in table 4.10 and the frequency with

which the majority of developers categorized the tool as helpful in table 4.11.

83

As we move down the weighting order, the value of displaying tools in most use cases diminishes quickly.

For example, “Example Code” and “Source Control” could be used in most scenarios, but the rankings for

each are quite different, with comparative sums of means equaling 63.54 and 20.09 respectively. The

difference in rankings from participants demonstrates that “Example Code” should be available as often as

possible in the palette, whereas “Source Control” is less important and thus may not need to be available.

Returning to the conclusions from Mason and Cooper [154], including a tool like “Source Control” may

actually hinder learning and productivity; thus, we do not include it in any of our recommendations.

There may be certain tools that are ranked low in table 4.10, yet other indicators point to them having

high value in specific scenarios. For example, “Blocks for Exiting” was ranked low in the sums of means,

but over half of the developers found it helpful in two scenarios. Similarly, “Project Files / Structure”

was ranked even lower than “Blocks for Exiting,” but it was ranked in the top three in the fifth scenario

regarding dataframes. In our renderings, “Project Files / Structure” is represented in a different tab than

our context-aware palette.

“Example Code,” “Blocks of In-Scope Variables,” and “Blocks to Create New Variables” were the top

tools categorized as helpful most often by developers, so they should be available whenever possible. The

“Example Code” could be displayed as a link, pop-out, or another unobtrusive format, so that the length

of the example code would not overtake the entire palette. In the renderings below, it is displayed as a link

for ease of visualization. We must also take into account the visual and cognitive overhead each tool would

present. For example, “Blocks of All Functions in the Class” is ranked before “Link to Class Documentation,”

but for a robust class, there might be hundreds or thousands of functions that could be displayed. This

takes compute cycles to parse and display as blocks and also presents a lot of visual information, which

could be overwhelming for some users, especially novices, as previously discussed. Interestingly, neither of

these tools were ever ranked in the top three nor bottom three, and they were only rated as helpful by the

majority of programmers in one scenario each. A “Link to Class Documentation” may provide the ability

to get just as much information without the overhead. We recommend having only one of these two tools

available until more data can be gathered. If “Blocks of All Functions in the Class” is chosen, then it is

recommended to list this at the end of the tool options and/or to provide a filter so as to not potentially

overwhelm users. This is how this tool is represented in our example visualizations.

“Alert About What Problems Mean” is another top-ranked tool by sums of weights. This highly-

specialized tool is most helpful when the IDE can detect a syntax error or some other issue in the code

prior to compilation. We recommend to hide this tool until such a time that the IDE detects a syntax error.

84

In that scenario, the block containing the error should turn red, and when the cursor is on that block, this

tool can appear, providing potential fixes. Until such a time, this tool does not need to be displayed, but

when it is, it should appear near the top of the palette.

“Blocks for I/O” and “Blocks for Conditionals” are the next highly-ranked tools in the sum of weights.

It makes sense that “Blocks for I/O” received a high ranking since questions one through three asked the

participant to “Imagine you’ve been tasked to write a small function that will take in an integer array,

prints out the even integers, and then returns an array of the even integers to the caller.” Thus, the

participant was primed that they needed “Blocks for I/O” to print out the array. Likewise, “Blocks for

Conditionals” likely received a high ranking because question three asked directly about “if statements” in

the study. Due to the fact that control statements (repetitions like traditional while and for loops) are a

similar fundamental concept as conditionals, it would follow that, despite their much lower ranking, “Blocks

for Control” should be displayed below the “Blocks for Conditionals” tool.

Interestingly, the tool “Blocks for Exiting” received a low ranking, despite the previously-mentioned

priming where the user was asked that it “...returns an array of the even integers” in questions one through

three. This tool appears to have limited use due to its ranking in the sum of weights (twelfth) and its

appearance in the top and bottom lists, where it was never ranked in the top three tools yet was twice

ranked in the bottom three. The aforementioned fact that over half of the programmers categorized it as

helpful in two scenarios does lend credence to support it existing on the palette at certain times. “Blocks to

Create New Blocks” and “Blocks to Import Additional Libraries” sit at the bottom of the rankings. These

tools could be displayed when a new project file is created and programmers need to begin importing

libraries and creating new classes and functions, but the data from this specific study does not support

their inclusion.

A true context-aware palette could have infinite arrangements depending on the amount of code in the

file, where the cursor sits in the code, and the number of tools potentially available. In synthesis of the

above, we will list the suggested palette tools and their order for context-aware palettes for the following

examples:

1. Figure 4.21: when a new project file is created

2. Figure 4.22: editing of a script with code not in a class and there are no imported libraries

3. Figure 4.23: editing of a script with imported libraries

4. Figure 4.24: editing a file within code in a class

85

5. Figure 4.25: when there is an error in a program

For this first scenario in figure 4.21, the top three weighted tools of “Example Code,” “Blocks of In-Scope

Variables,” and “Alert About What Problems Mean” are not valid tools to display. Without any code, the

palette cannot decipher what example code to display, since there would be far too many options. There

are no in-scope variables to show and there are no errors about which to alert the programmer, so neither

of these tools can be displayed, either. In this case, the palette will display the most common blocks for

the programmer to start writing code.

In this second scenario in figure 4.22, the “Example Code” tool is still not showing, since the palette

does not have context for what examples to show, and again there are no errors to show, which means

“Alert About What Problems Mean” is again not valid to display. The “Blocks of In-Scope Variables” tool

is present with “my_int” and “my_counter” showing on the palette.

The primary difference we see in the scenario in figure 4.23 is the “Example Code” tool is now displayed

as the most prominent tool. In order for this to be shown, the example assumes a library was imported to

narrow the range of possible example code for the programmer.

Figure 4.24 demonstrates how the palette could look when editing in a class. All of the functions in

the class could be shown toward the bottom of the palette, and there could be a filter box in order to help

the programmer quickly find the function they need. This could also aid in discovering related functions

to the programmer’s initial options that would be a good fit for program creation. This version maintains

the important tools for “Example Code” and “Blocks of In-Scope Variables” as well as other common tools

before the functions in the class.

For the scenario in figure 4.21, we took the previous example and added an error to it. In this example,

the programmer needs to add “Library.Containers.Array” to the use statements at the top of the program

in order to use the array class. The alert box promptly opens up when the cursor is present on the error

line, but when the cursor is not on that line, the alert box will hide itself again. Clicking on the “Click

Here to Add” link in the alert box will add the proper “use statement” to the top of the file and the alert

box will disappear, effectively reverting the palette to look like figure 4.24.

Notably, each of these examples do not all necessarily contain the same tools nor the same number of

tools. This is a feature and the power of the context-aware palette; it can adapt to a given scenario. Since

programming is such a complex task, the scenarios above do not cover all possibilities. These provided

scenarios are a general starting point for guidance. For example, it is easy to imagine any number of

86

Figure 4.21: Recommended Palette: Empty File

87

Figure 4.22: Recommended Palette: Editing a Script Without Imported Libraries

88

Figure 4.23: Recommended Palette: Editing a Script With Imported Libraries

89

Figure 4.24: Recommended Palette: Editing a Class

90

Figure 4.25: Recommended Palette: Error in the Code

91

scenarios similar to example two, but with specific libraries such as DataFrame or Array imported. In

these cases, it might be beneficial to add “Blocks of All Functions in the Class” instead of “Blocks to Create

New Blocks” to the palette. Overall, these three examples are to serve as a starting point rather than a

final authoritative word for all use cases.

4.4.7 Generalizability

This study encompassed participants ranging from early-stage novices to professionals with decades of

experience. All participants completed high-school at a minimum, and some had degrees as high as a PhD.

Professionals were those who are currently employed in programming roles or who had been in the past

where programming was either the primary or secondary responsibility of the role. Despite these factors,

the generalizablity of this study is difficult to quantify. We did not get enough professional programmers to

claim any level of generalizability for that group with this result. This study also excludes K–12 students,

which is an important missing cohort for any potential generalizability.

Further, studies involving surveys have natural limitations. Due to the lack of a working tool to actually

test, this study’s format as a thought experiment reduced the ability to effectively generalize our results.

Since no validated instruments appear to exist, nor does such an IDE exist to create said instrument,

the present study’s value should be seen as an initial stake in the ground from which to conduct future

studies. We do not know if these results would hold when such a tool is used in practice; we would need

more real-world observations, along with taking timing and accuracy measurements, with people across a

spectrum of different skill levels to claim any level of generalizability. Put simply, the data from this study

can be used to create an initial IDE for testing purposes; future studies can use that initial IDE to validate

or refute the data herein.

4.4.8 Implications

Similar to the first study, future research should be conducted in various ways. First, this study could be

conducted on a larger sample, especially with more professional programmers. This would help generalize

those results to a broader range of programming experiences. It is likely that utilizing a more sophisticated

testing environment that allows for live programming would help test the palette once implemented. Finally,

testing this instrument on K–12 novices would increase the generalizability of these findings. As before, it

makes sense to consider “birth to death” as a metaphor to understand when and where such results might

92

apply.

4.4.9 Limitations

A primary limitation of the study is the participant pool’s limited number of professionals. In order to

partially compensate, we classified some upper-level students with professional programming experience

as professionals, but since this is self-reported data, we do not know if this experience would typically be

classified as professional experience or more like a basic internship. To compound that, the ongoing work

of Siegmund along with Peitek et al. [155] demonstrate that self-reported programmer experience is not

the primary factor in significantly different programmer efficacy. Instead, it is part of a multi-dimensional

set of factors including interest in learning, self comparison/reflection, and others, so just selecting years

of experience and professional experience have little to no power to predict outcomes.

Another limiting factor is the lack of participants who are K–12 students. It is impossible to say if such

a tool can scale from early novices to professionals if we cannot start at the earliest stages. This cohort

should be studied once an initial tool is made, so their results can be directly observed.

Another limitation is that this was a thought experiment for participants, since the instrument did

not allow for any interaction nor programming activities. Participants might have different responses once

such a system is implemented and they are able to interact with it. This was merely a thought experiment

wrapped in a survey, but once participants can use it in practice, they may help us uncover completely

different results.

Finally, and potentially the greatest limitation, there likely was not a broad enough array of scenarios

tested. For example, “Blocks for Control” and “Blocks for Exiting” were ranked quite low in this study, but

there were not any scenarios that specifically called for them. The results might be different if we added

scenarios requiring loops or return statements. This is a difficult limitation to overcome in this format,

since we would never be able to test every possible programming scenario. Thus the format itself was a

major limitation, but it was beneficial for creating the first prototype.

93

Chapter 5

Conclusion

5.1 Discussion of Research Questions

Overall, this body of work endeavored to improve the ability for students to learn programming; each study

approached this goal from a different aspect. We included input from professional programmers because

they bring a wealth of knowledge and experience to programming overall. In addition, it was important

to us to get feedback from university students, since they represent an array of experience levels. Some

student participants had very introductory, cursory experience with programming, providing feedback

from early-stage learners. Other student participants represented an intermediate level of programming

experience. Each of the studies in chapter 3 and chapter 4 were designed to broadly address the initial

research questions, which we will now discuss in turn.

5.1.1 RQ 1

What attributes of block programming languages and environments do professionals find to be beneficial

versus detrimental?

In this question, we assessed what existing attributes of block-based languages and environments help

programmers succeed in learning and coding, and conversely, which ones are at least potentially detrimental

to learning and learning transference.

In the chapter 3 study about block-based programming attributes, we identified several attributes of

block languages that are beneficial to programming and learning programming. As previously noted in

studies, colorful blocks are beneficial despite the fact that we do not empirically know the reason why, nor

94

what about them makes them beneficial. The shape of the blocks and the dropdown arrows are beneficial

to learning and programming, since they provide visual markers to easily distinguish information. Perhaps

the most obvious beneficial attribute is one we labeled as “text, punctuation, and symbols,” which simply

provides the same information in a block language that it would in a text-based language.

When we consider the chapter 4 study about the IDE for block languages, we find that several of

the basic blocks, which most block-based IDEs provide by default, are helpful for programming activities.

In this study, we were not surprised to learn it is beneficial for the IDE to present blocks for controls,

conditionals, input/output, and creating new variables.

Conversely, there were several attributes working in concert to form spatial layout, that appear to be

detrimental to the learning and programming environment. Spatial layouts, which are dispersed on an

unbound editing palette, negatively impact programming activities for several reasons. First, horizontal

scrolling and dispersed block arrangement can be taken as a problematic pair. It is a much more com-

mon and simple activity to scroll up and down rather than left and right. This is even more true when

accessibility is considered, which it should always be. There are more options to easily scroll up and down

to suit people’s needs. For example, up and down arrows can be used to simply move line by line verti-

cally. Moving left and right with the keyboard typically moves within a line rather than from left entity

to right entity, such as from a left set of blocks to a different set of blocks on the right. Using the tab

key does not solve that complication, since tab is used for indentation or other special uses in accessible

environments. Thus, a combination of keystrokes would be needed to effectively move between left/right

positioned blocks, which may present other accessibility challenges, such as for people with mobility issues.

Additionally, spatial layout prevents the ability to use line numbers, for which programmers indicated a

preference. Thus, we highly recommend against utilizing spatial layouts.

5.1.2 RQ 2

What aspects of block-based programming might be beneficial to both learners and professionals?

The intent behind this question was to determine if there is a difference between the perspectives of

professionals and learners. In many cases, such as throughout the study in chapter 4 about the IDE tools,

we learned there was not a significant difference between the perspectives of professionals and novices.

In the chapter 3 study about visual attributes, we discovered significant differences between learners

and professionals for the attributes of color, text, and line numbers. We also found differences, as expected,

with task timing and correctness. In all of these cases, while the differences were statistically significant,

95

the effect size was very small. When testing the color attribute, professionals in the two groups which

received the horizontal scroll treatment were more extreme in rating the preference for color or the disdain

for grayscale; that experience difference accounted for 6% of the model, which is fairly small. In all other

cases of professionals versus learners perspectives, the differences were even smaller. They were not more

than 2.5% and ranged down to less than 1%.

Taking this all into account, while were some differences between professionals and learners, in this

study we did not observe large differences between the two experience groups. Perhaps the differences

would be greater if live programming tasks were possible, but that might also present greater negative

effects with programming anxiety [156]. The differences might also present as stronger effect sizes if the

tasks were more difficult in nature; the simplicity of tasks made them more achievable by student novices,

thus, the differences may not have been as great. These results would best be tested with an online system

where live programming activities can take place, and the system should automatically log the time to

correct completion without letting participants move to the next task unless they either (a) correctly solve

the challenge or (b) hit a pre-determined time limit per task. Additionally, it should be considered if the

task difficulty should be static or build in difficulty, and at what difficulty each level of programming task

should be. With such changes and considerations, results could be further evaluated to determine if this

research question is further supported or refuted in subsequent studies.

5.1.3 RQ 3

What capabilities could be added to a block language and environment to ease the transitional friction for

learners to become professionals?

Here, the purpose was to find if there are gaps in current block languages that could help with learning

to program, transference of that learning, and programming in block languages in general. If done properly,

the need for a transfer of learning might be diminished because the block language and environment would

be robust enough to be suitable for a broader set of programming purposes, which means more programmers

would be able to use it for more tasks during a longer tenure.

The first beneficial addition to block languages is to have a single, left-aligned column of blocks, at least

for left-to-right language readers. With the aforementioned discussion about spatial layout, we recognized

the inability to have line numbers, despite programmers’ preference for them. Employing this layout

also prevents the dispersed layout and the need for wide-scale horizontal scrolling. It would also prevent

times when spatial layout with blocks results in some blocks getting orphaned on the editing palette

96

or the case of not knowing which block groups will run first. Having the single, left-aligned column of

blocks prevents many of the detrimental issues empirically assessed in the two studies in this dissertation.

Programmers would instead be able to rely upon vertical scrolling, consistent layout, line numbers, reliable

parse/execution order, and not losing any of their code to an unfindable location.

Another potential beneficial addition to block languages is the ability to create comments. While there

are some block languages that allow for comments, many of them hide the comments inside of a popup

or another area that is difficult to discover. Comments serve various purposes and should be added to

programs to aid with rapid program comprehension [157, 158], which is critical, considering that prior

studies demonstrate that program comprehension takes over half the time spent in development activi-

ties [132, 133]. Providing the ability to add comments prominently in special-made blocks for comments,

rather than hiding them or disallowing them, will help learners to better understand and professionals to

more quickly comprehend preexisting code.

Creating a context-aware palette for a block-based IDE is another potential way to make block languages

beneficially scale from learners to professionals. There are multiple tools, or features/affordances, that can

be added to a context-aware palette beyond just the standard set of blocks outlined in the discussion of

RQ 1. We will address them here in order of preference from the second study in chapter 4 about the

context-aware IDE.

First, example code was the most commonly-requested tool for a context-aware palette. While initially

this might seem to indicate that example code should always be present, in fact it is most powerful when

used in specific contexts. For example, attempting to display example code in an empty or near-empty file is

not beneficial, and in fact it could get in the way of more useful tools for that stage of code implementation.

Similarly, there are times in writing programs, such as a simple “if statement” in a script, where example

code may cause cognitive overload rather than serve as a helpful tool. Where example code could truly

display its power is when the cursor is on specific blocks, such as classes or functions/methods; thus, the

palette could provide access to example code about the usage of those blocks. This advanced feature

would be quite powerful for intermediate and advanced programmers who are learning new programming

language features.

Another context-aware feature that would benefit programmers from novices through professionals is

blocks of in-scope variables. Many block languages are able to add user-created variable blocks to their

existing palette. The power behind a context-aware palette presenting in-scope variables is two-fold. For

one, the palette would not present blocks outside of the scope where the cursor sits, so there would be

97

reduced clutter on the palette. Secondly, the context-aware palette could show in-scope variables that were

inherited from other classes in the scope. These would both be beneficial as a learning tool about scope,

as well as a means of enhancing efficiency for advanced programmers.

Alerts about problems and how to fix them were highly ranked across the board by programmers. This

tool would provide the capability to see in real time when an error existed. Current IDEs often show a

small red dot in the margin of the code indicating when an error exists. In the example code we provided

in the study from chapter 4 about the IDE, the entire block turned red to indicate there was an issue. If,

in addition to this red alert color, a new section of the context-aware palette appeared and displayed a

plainly worded explanation of the problem, the programmer would be able to easily fix it. Additionally, if

the error is as simple as needing to add a new “use statement,” as in the case of our example in the study,

the error explanation section could have a button for the programmer to click that would automatically

add said “use statement” to the top of the program. Having effective and prominent messaging for syntax

errors is critical, especially for novices [159, 160, 89].

The final two suggested additions will be addressed together: blocks for all the functions in a given

class and links to class documentation. Having the capability to show these options would be a beneficial

learning tool for novices as well as a shortcut and helper tool for advanced programmers. It would be

entirely possible to show both tools, but it may be redundant to do so. In the case of showing blocks

for all functions in the class, having a method to filter, such as a text box to type in part of the name,

would provide a shortcut to access the needed blocks. In addition, this method would allow discoverability

to lesser-used functions, especially for advanced programmers. For example, it would be easy to imagine

an array class, such as in the Quorum programming language, having a function to add an element to

an array along with the value and location, like this: “Add(integer location, Type value)” in a given

language. If the programmer typed “Add” into the filter box, they may discover more helpful functions

such as “AddToEnd(Type value)” and “AddToFront(Type value)” that would automatically handle adding

the value at the location for them. Providing the functionality to automatically generate all the blocks in

a given class, along with having a filter box, could speed up professional programmers’ work as well as be

a tool for novices to expand their programming knowledge. Similarly, having links to class documentation

would be beneficial in that the programmer would have easy, one-click access to all the documentation,

which would provide all the information about what classes are available and how to use them without any

arduous searching. It could additionally have example code, which is the most requested tool addition to

a context-aware palette.

98

Taken all together, these capabilities could enhance the capability for novices to learn programming,

the efficiency of professional programmers, and potentially reduce the transitional friction from blocks to

text by providing a robust block-based programming language and environment to keep programmers using

blocks from the learning stage through professional programming.

5.2 Future Research

Numerous studies could expand on this study of block-based attributes. The study could be replicated with

live programming tasks and with some minor instrumentation changes, such as timing, forcing correctness

within a time limit, and the ability to vary treatments, to see if the findings from this present study hold.

Such a system, and its online availability, would provide programmers with the ability to actually solve

live coding challenges. The first study in chapter 3 about visual attributes in a block-based language could

be fully replicated within such an environment to determine if the results hold true.

Another interesting independent study to pursue is one on color usage. Much is stated about block

languages using colors as a memory and programming aid, yet many studies lament the low transference

of learning from blocks to text. There is a discordance, in this researcher’s opinion, between how colors

are treated in block languages, which are done by functional groups, versus in text-based languages, which

are colored by syntactic groups. It is entirely possible that some of the transference of learning issues are

due to the aforementioned discordance, so a study should be performed to test that idea.

There are several studies that could be performed after the initial creation of a context-aware IDE.

First, the second study in chapter 4 could be fully replicated as-is with live coding challenges. As stated

above, with some development work, the study could be replicated with live programming tasks to see if

the findings hold. Additional studies could be done with varying treatments, such as changed tool orders

or a control group using static, non-context-aware tools for comparison. With those studies, task timing

and accuracy could come into play and be better measures than user-selected preferences.

In both cases, additional studies could be repeated with more professional programmers. Perhaps

even more importantly, the studies could be repeated with K–12 students and teachers. Block-based

programming is extremely popular for early-stage computer science education, so input from K–12 students

and teachers is critical to ensuring we are serving this important group. Of particular interest is K–4, in

which students are in the early stages of learning how to read, so a block language needs to be usable for

pre-literate students. This would include a transitional age range where students could use a programming

99

language without words and proceed into a programming language with simple words. Following that,

there is the next transitional state from simplified words to more complex, expressive language as students

transition to high school. Throughout these age ranges, there are multiple states where transitional friction

may occur, so any studies that expand on these works would be beneficial to computer science education

and computational thinking overall.

100

Appendix A

Survey Instrument 1

The following is the instrument that was created to assess the attributes in chapter 3, Study 1: Assessing

Visual Attributes’ Role in Readability and Comprehension of Block-Based Programs.

101

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 1/98

block-based-programming-irb-req

Consent

Tools Saved at 4:43 PM Draft Preview Publish

102

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 3/98

Consent

Block-Based Programming

Howard Hughes School of Engineering

Computer Science

UNLV

INFORMED CONSENT FORM:

Before you consider the research, you should be aware of the following information:
Research is voluntary. You do not have to be in this research study.
There are no risks to you from participating in this research study except for your
time and inconvenience.
You will fill out a survey with basic demographic information about yourself.
You will work through some programming tasks and answer questions about
them.
The research study will take approximately 15 minutes.
If you agree to be in the study, you should read the rest of this document. The
document explains what will happen to people in the study.
You must be at least 18 years of age to participate.

WHY ARE YOU BEING ASKED TO PARTICIPATE:
The purpose of the research is to learn about how block-based programming
languages are used by practitioners.

WHAT YOU WILL BE ASKED TO DO:
If you decide to participate, you will be asked to fill out a demographic survey (e.g.,
age, gender, etc), work through some problems related to reading software
programs, and provide feedback.

RISKS:
Except for your time and inconvenience, there are no risks to you from participating
in this study.

BENEFITS:
While this study will have no direct benefit to you, this research may help you learn
more about programming and programming environments.

CONFIDENTIALITY:
Your name will not be on any of the data. Your name or other identifying
information will not be reported in any publications. The de-identified data could be
used for future research studies or distributed to another investigator for future
research studies without additional informed consent from you.
VOLUNTARY:
Participation is voluntary. If you choose to take part in this study, you may stop at
any time.

CONTACT INFORMATION:
If you have any questions about this study, please contact Alex Hoffman at
alex.hoffman@unlv.edu or Dr. Andreas Stefik at andreas.stefik@unlv.edu. If you
have any questions about your rights as a research participant, please contact the
Office of Research Integrity, University of Nevada Las Vegas, at ORI@unlv.edu.

103

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 4/98

If you click Accept, it indicates that you have read the above information and agree
to participate, and you will continue to the experiment.Consent Answer

Yes, I Accept

No, I Do Not Accept

Do you consent to be in this study?

Import from library Add new question

Demographics

D1

High School

Some College

Associate Degree

Bachelors Degree

Masters Degree

PhD

Other

What is the highest level of education you completed?

D2

Freshman

Sophomore

Junior

Senior

Graduate

Not Enrolled

If you are currently enrolled in college, what is your classification?

D3

How old are you?

Ŀ

104

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 5/98

D4

Male

Female

Non-binary / third gender

Prefer not to say

What is your gender?

D5

White

Black or African American

American Indian or Alaska Native

Asian

Native Hawaiian or Pacific Islander

Other

Prefer not to say

What is your ethnicity?

D6

Currently employed to write code

Previously employed to write code

Never employed to write code as a primary job function, but it was a periodic part of the job

Never employed to write code

Are you now or have you ever been employed to write code professionally, regardless of
the programming language?

D7

C / C++

Java

Javascript

HTML / CSS

PHP

Python

Other

None

What programming languages have you used to write code?

105

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 6/98

D8

How many years of programming experience do you have?

Import from library Add new question

Explanation1_clr

E1

You will be introduced to a block-based programming
language. You will then be asked a series of questions
about the block-code that is presented to you.

Variables are used to store information to be referenced and manipulated in a program.

This block creates or initializes a variable (named
my_var).

This block uses an existing variable (named my_var).

Import from library Add new question

Explanation2_clr

Ŀ

106

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 7/98

E2

Here are some basic types of data.

This is an integer, which is a whole number:

This is how to set the variable my_var to the integer 5:

This is a string, which is text-based data that can contain letters, numbers,
spaces, and special characters:

This is how to set the variable my_var to the string "Hello world!":

This is a bool, which can only be either True or False:

This is how to set the variable my_var to True:

Import from library Add new question

T1-Q1a-GrpA

107

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 8/98

T1a

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1a-1

How many times is a variable created in the code above? (if any are in a loop, count it
as 1)

Type the number below or "unsure" if you are unclear or need more info.

Q15

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1a_GrpA

Ŀ

108

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 9/98

Q291

Use this code to answer the questions below. You
might need to scroll down to see all the code.

109

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 10/98

T1F1a

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1b-GrpA

110

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 11/98

T1b

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1b-1

How many times is a variable used (not set) in the code above?
Note: it does not have to be executed to be used. Any use in a loop counts as 1 time.

Type the number below or "unsure" if you are unclear or need more info.

Q25

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1b_GrpA

Ŀ

111

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 12/98

Q315

Use this code to answer the questions below. You
might need to scroll down to see all the code.

112

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 13/98

Q316

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1c-GrpA

113

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 14/98

T1c

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1c-1

How many strings are in the code above?
Note: Count only strings inside of quotation marks. Count each string inside of quotation
marks as one, even if it is within a loop. Count each string separately, even if they are on
the same line.

Type the number below or "unsure" if you are unclear or need more info.

Q21

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1c_GrpA

Ŀ

114

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 15/98

Q317

Use this code to answer the questions below. You
might need to scroll down to see all the code.

115

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 16/98

Q318

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1d-GrpA

116

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 17/98

T1d

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1d-1

ERR_MSG

num

guess

guesses

result

Unsure or need more information

Which variable was used the most? (not set)
Note: Count each usage inside as one. Assume any loops only execute one time.

Q184

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

Import from library Add new question

T1-F1d_GrpA

117

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 18/98

Q319

Use this code to answer the questions below. You
might need to scroll down to see all the code.

118

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 19/98

Q320

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1a-GrpB

119

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 20/98

T1Q1a

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1q1-a

How many times is a variable created in the code above? (if any are in a loop, count it
as 1)

Type the number below or "unsure" if you are unclear or need more info.

Q190

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1a_GrpB

Ŀ

120

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 21/98

Q328

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

121

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 22/98

Q329

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1b-GrpB

122

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 23/98

T1Q1b

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1Q1-b

How many times is a variable used (not set) in the code above?
Note: it does not have to be executed to be used. Any use in a loop counts as 1 time.

Type the number below or "unsure" if you are unclear or need more info.

Q200

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1b_GrpB

Ŀ

123

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 24/98

Q330

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

124

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 25/98

Q331

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1c-GrpB

125

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 26/98

T1Q1c

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1q1c-1

How many strings are in the code above?
Note: Count only strings inside of quotation marks. Count each string inside of quotation
marks as one, even if it is within a loop. Count each string separately, even if they are on
the same line.

Q206

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1c_GrpB

Ŀ

126

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 27/98

Q332

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

127

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 28/98

Q333

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1d-GrpB

128

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 29/98

T1Q1d

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1Q1d-1

ERR_MSG

num

guess

guesses

result

Unsure or need more information

Which variable was used the most? (not set)
Note: Count each usage inside as one, even if it is within a loop.

Q209

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

Import from library Add new question

129

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 30/98

T1-F1d_GrpB

Q334

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

130

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 31/98

Q335

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

Explanation3_clr

131

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 32/98

E3

Here is how to print data to the program's user.

This is the print block, which prints the item inside parentheses () to the
user

This is how to print the variable my_var:

This is how to print the string "Hello world!":

This is how to print an integer:

Import from library Add new question

Explanation4_clr

132

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 33/98

Q342

Here is how to receive input from the program's user.

This is the input block, which prints any text inside quotation marks to the
user:

Here, the question "What is your name" is printed to the user, and the
program waits for the user to type in an answer and press return:

This group of blocks will print the text "What is your name" to the user and
wait for a response. When the user responds, the data they entered will be
stored to the variable my_var:

Import from library Add new question

T1-Q1e-GrpA

133

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 34/98

T1e

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1e-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

What is the first line of text displayed when the user runs the program?

Q29

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

134

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 35/98

Import from library Add new question

T1-F1e_GrpA

Q321

Use this code to answer the questions below. You
might need to scroll down to see all the code.

135

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 36/98

Q322

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scroling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1f-GrpA

136

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 37/98

T1f

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1f-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 95 and the user enters the integer 5. What is the next single line
of text displayed to the user?

Q33

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

137

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 38/98

Import from library Add new question

T1-F1f_GrpA

Q323

Use this code to answer the questions below. You
might need to scroll down to see all the code.

138

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 39/98

Q324

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1g-GrpA

139

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 40/98

T1g

Use this code to answer the questions below. You
might need to scroll down to see all the code.

T1g-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more info

Assume num is set to 50 and the user enters "help" at the prompt. What is the next
single line of text displayed to the user?

Q38

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

140

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 41/98

Import from library Add new question

T1-F1g_GrpA

Q325

Use this code to answer the questions below. You
might need to scroll down to see all the code.

141

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 42/98

Q326

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1e-GrpB

142

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 43/98

T1Q1e

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1Q1e-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

What is the first line of text displayed when the user runs the program?

143

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 44/98

Q212

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1e_GrpB

Q336

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

144

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 45/98

Q337

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1f-GrpB

145

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 46/98

T1Q1f

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1Q1f-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 95 and the user enters the integer 5. What is the next single line
of text displayed to the user?

146

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 47/98

Q215

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1f_GrpB

Q338

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

147

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 48/98

Q339

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1g-GrpB

148

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 49/98

T1Q1g

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

T1Q1g-1

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 50 and the user enters "help" at the prompt. What is the next
single line of text displayed to the user?

149

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 50/98

Q218

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1g_GrpB

Q340

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

150

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 51/98

Q341

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

Explanation1_bw

151

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 52/98

Q344

You will be introduced to a block-based programming
language. You will then be asked a series of questions
about the block-code that is presented to you.

Variables are used to store information to be referenced and manipulated in a program.

This block creates or initializes a variable (named
my_var).

This block uses an existing variable (named my_var).

Import from library Add new question

Explanation2_bw

152

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 53/98

Q346

Here are some basic types of data.

This is an integer, which is a whole number:

This is how to set the variable my_var to the integer 5:

This is a string, which is text-based data that can contain letters, numbers,
spaces, and special characters:

This is how to set the variable my_var to the string "Hello world!":

This is a bool, which can only be either True or False:

This is how to set the variable my_var to True:

Import from library Add new question

T1-Q1a-GrpC

153

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 54/98

Q347

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q348

How many times is a variable created in the code above? (if any are in a loop, count it
as 1)

Type the number below or "unsure" if you are unclear or need more info.

Q349

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1a_GrpC

Ŀ

154

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 55/98

Q350

Use this code to answer the questions below. You
might need to scroll down to see all the code.

155

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 56/98

Q351

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1b-GrpC

156

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 57/98

Q352

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q353

How many times is a variable used (not set) in the code above?
Note: it does not have to be executed to be used. Any use in a loop counts as 1 time.

Type the number below or "unsure" if you are unclear or need more info.

Q354

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1b_GrpC

Ŀ

157

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 58/98

Q413

Use this code to answer the questions below. You
might need to scroll down to see all the code.

158

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 59/98

Q414

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1c-GrpC

159

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 60/98

Q355

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q356

How many strings are in the code above?
Note: Count only strings inside of quotation marks. Count each string inside of quotation
marks as one, even if it is within a loop. Count each string separately, even if they are on
the same line.

Type the number below or "unsure" if you are unclear or need more info.

Q357

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1c_GrpC

Ŀ

160

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 61/98

Q415

Use this code to answer the questions below. You
might need to scroll down to see all the code.

161

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 62/98

Q416

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1d-GrpC

162

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 63/98

Q358

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q359

ERR_MSG

num

guess

guesses

result

Unsure or need more information

Which variable was used the most? (not set)
Note: Count each usage inside as one. Assume any loops only execute one time.

Q360

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

Import from library Add new question

163

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 64/98

T1-F1d_GrpC

Q417

Use this code to answer the questions below. You
might need to scroll down to see all the code.

164

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 65/98

Q418

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1a-GrpD

165

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 66/98

Q361

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q362

How many times is a variable created in the code above? (if any are in a loop, count it
as 1)

Type the number below or "unsure" if you are unclear or need more info.

Q363

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1a_GrpD

Ŀ

166

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 67/98

Q393

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

167

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 68/98

Q394

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1b-GrpD

168

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 69/98

Q364

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q365

How many times is a variable used (not set) in the code above?
Note: it does not have to be executed to be used. Any use in a loop counts as 1 time.

Type the number below or "unsure" if you are unclear or need more info.

Q366

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1b_GrpD

Ŀ

169

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 70/98

Q425

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

170

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 71/98

Q426

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1c-GrpD

171

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 72/98

Q367

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q368

How many strings are in the code above?
Note: Count only strings inside of quotation marks. Count each string inside of quotation
marks as one, even if it is within a loop. Count each string separately, even if they are on
the same line.

Q369

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1c_GrpD

Ŀ

172

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 73/98

Q427

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

173

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 74/98

Q428

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1d-GrpD

174

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 75/98

Q370

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q371

ERR_MSG

num

guess

guesses

result

Unsure or need more information

Which variable was used the most? (not set)
Note: Count each usage inside as one, even if it is within a loop.

Q372

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

Import from library Add new question

175

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 76/98

T1-F1d_GrpD

Q429

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

176

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 77/98

Q430

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

Explanation3_bw

177

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 78/98

Q373

Here is how to print data to the program's user.

This is the print block, which prints the item inside parentheses () to the
user

This is how to print the variable my_var:

This is how to print the string "Hello world!":

This is how to print an integer:

Import from library Add new question

Explanation4_bw

178

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 79/98

Q374

Here is how to receive input from the program's user.

This is the input block, which prints any text inside quotation marks to the
user:

Here, the question "What is your name" is printed to the user, and the
program waits for the user to type in an answer and press return:

This group of blocks will print the text "What is your name" to the user and
wait for a response. When the user responds, the data they entered will be
stored to the variable my_var:

Import from library Add new question

T1-Q1e-GrpC

179

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 80/98

Q375

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q376

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

What is the first line of text displayed when the user runs the program?

Q377

This question lets you record and manage how long a participant spends on this page. This question will not be displayed
to the participant.

180

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 81/98

Import from library Add new question

T1-F1e_GrpC

Q419

Use this code to answer the questions below. You
might need to scroll down to see all the code.

181

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 82/98

Q420

For each of the following visual indicators, please select how helpful or unhelpful it
was in answering the previous question.

Extremely

Unhelpful

Very

Unhelpful

Somewhat

Unhelpful

Neither

helpful

nor

unhelpful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1f-GrpC

182

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 83/98

Q378

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q379

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 95 and the user enters the integer 5. What is the next single line
of text displayed to the user?

183

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 84/98

Q380

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1f_GrpC

Q421

Use this code to answer the questions below. You
might need to scroll down to see all the code.

184

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 85/98

Q422

For each of the following visual indicators, please select how helpful or unhelpful it
was in answering the previous question.

Extremely

Unhelpful

Very

Unhelpful

Somewhat

Unhelpful

Neither

helpful

nor

unhelpful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1g-GrpC

185

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 86/98

Q381

Use this code to answer the questions below. You
might need to scroll down to see all the code.

Q382

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more info

Assume num is set to 50 and the user enters "help" at the prompt. What is the next
single line of text displayed to the user?

186

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 87/98

Q383

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1g_GrpC

Q423

Use this code to answer the questions below. You
might need to scroll down to see all the code.

187

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 88/98

Q424

For each of the following visual indicators, please select how helpful or unhelpful it
was in answering the previous question.

Extremely

Unhelpful

Very

Unhelpful

Somewhat

Unhelpful

Neither

helpful

nor

unhelpful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1e-GrpD

188

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 89/98

Q384

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q385

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

What is the first line of text displayed when the user runs the program?

189

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 90/98

Q386

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1e_GrpD

Q431

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

190

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 91/98

Q432

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1f-GrpD

191

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 92/98

Q387

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q388

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 95 and the user enters the integer 5. What is the next single line
of text displayed to the user?

192

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 93/98

Q389

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1f_GrpD

Q433

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

193

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 94/98

Q434

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

Harmful

Very

Harmful

Somewhat

Harmful

Neither

Helpful

nor

Harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

T1-Q1g-GrpD

194

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 95/98

Q390

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

Q391

Input an integer from 1 to 100

high

low

correct

Choose an integer from 1 to 100

Your answer is high

Your answer is low

Your answer is correct

It took

guesses to guess correctly

None: the program crashes

Unsure or need more information

Assume num is set to 50 and the user enters "help" at the prompt. What is the next
single line of text displayed to the user?

195

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 96/98

Q392

This question lets you record and manage how long a participant spends on this page. This question will not be displayed

to the participant.

Import from library Add new question

T1-F1g_GrpD

Q435

Use this code to answer the questions below. You
might need to scroll to the right to see all the code.

196

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 97/98

Q436

For each of the following visual indicators, please select how helpful or harmful it
was in answering the previous question.

Extremely

harmful

Very

harmful

Somewhat

harmful

Neither

helpful

nor

harmful

Somewhat

Helpful

Very

Helpful

Extremely

Helpful

1 2 3 4 5 6 7

Color of the block

Shape of the block

Arrangement of the

blocks

Scrolling

Text, punctuation, or

symbols

Lack of comments

Lack of line numbers

Spacing

Dropdown arrow next to

text

Other

Import from library Add new question

Final

197

6/3/23, 4:43 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_7WeStt3DXi7s52C/edit?Tab=Builder 98/98

Q289

Thank you for your time. If you have any additional feedback, please record it in the
textbox below.

Q157

Yes

No

If you wish to enter your email address to verify you took this survey, please select "Yes"
to be directed to a new form. Your email address will not be associated with your survey
responses.

Otherwise select "No" to end the survey without recording your email.

Import from library Add new question

Add Block

End of Survey

We thank you for your time spent taking this survey.

Your response has been recorded.

Ŀ

198

Appendix B

Survey Instrument 2

The following is the instrument that was created to assess the attributes in chapter 4, Study 2: Context-

Aware Palette for a Block-Based Language.

199

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 1/14

QS_IDE_IRB ExpertReview score Fair

Consent

Q2

Yes, I Accept

No, I Do Not Accept

Do you consent to be in this study?

Import from library Add new question

Add Block

Time

Q1

Block-Based IDE

Howard Hughes School of Engineering

Computer Science

UNLV

INFORMED CONSENT FORM:

Before you consider the research, you should be aware of the following information:
Research is voluntary. You do not have to be in this research study.
There are no risks to you from participating in this research study except for your time and inconvenience.
You will fill out a survey with basic demographic information about yourself.
You will look at an Integrated Development Environment (IDE) and answer questions about it.
The research study will take approximately 15 minutes.
If you agree to be in the study, you should read the rest of this document. The document explains what will happen to people
in the study.
You must be at least 18 years of age to participate.

WHY ARE YOU BEING ASKED TO PARTICIPATE:
The purpose of the research is to learn about how block-based programming languages are used by practitioners.

WHAT YOU WILL BE ASKED TO DO:
If you decide to participate, you will be asked to fill out a demographic survey (e.g., age, gender, etc), work through some
problems related to reading software programs, and provide feedback.

RISKS:
Except for your time and inconvenience, there are no risks to you from participating in this study.

BENEFITS:
While this study will have no direct benefit to you, this research may help you learn more about programming and programming
environments.

CONFIDENTIALITY:
Your name will not be on any of the data. Your name or other identifying information will not be reported in any publications. The
de-identified data could be used for future research studies or distributed to another investigator for future research studies
without additional informed consent from you.

VOLUNTARY:
Participation is voluntary. If you choose to take part in this study, you may stop at any time.

CONTACT INFORMATION:
If you have any questions about this study, please contact Alex Hoffman at alex.hoffman@unlv.edu or Dr. Andreas Stefik at
andreas.stefik@unlv.edu. If you have any questions about your rights as a research participant, please contact the Office of
Research Integrity, University of Nevada Las Vegas, at ORI@unlv.edu.

If you click Accept, it indicates that you have read the above information and agree to participate, and you will continue to the
survey.

Tools Saved at 5:22 PM Draft Preview Publish

200

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 2/14

Q1

This survey should take approximately 15 minutes to complete.

Your responses are anonymous, so your answers cannot be associated to you.

First, you will be asked some demographics questions.

After that, you will be asked questions regarding the study. Answer each question to the best of your ability without using external
references.

Import from library Add new question

Add Block

Demographics

Q1

High School

Some College

Associate Degree

Bachelors Degree

Masters Degree

PhD

Other

What is the highest level of education you completed?

Q2

Freshman

Sophomore

Junior

Senior

Graduate Program

Not Enrolled

If you are currently enrolled in college, what is your classification?

Q3

How old are you?

Q4

Male

Female

Non-binary / third gender

Prefer not to say

What is your gender?

Q5

White

Black or African American

American Indian or Alaska Native

Asian

Native Hawaiian or Pacific Islander

Other

Prefer not to say

What is your ethnicity?



201

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 3/14

Q6

Currently employed to write code

Previously employed to write code

Never employed to write code as a primary job function, but it was a periodic part of the job

Never employed to write code

Are you now or have you ever been employed to write code professionally, regardless of the programming language?

Q7

C / C++

Java

Javascript

HTML / CSS

PHP

Python

Other

None

What programming languages have you used to write code?

Q8

How many years of professional programming experience do you have?

Q17

Yes

No

Have you ever programmed in a Block Based Language such as Scratch, Blockly, Snap!, Lego Mindstorms, etc?

Q17a

0–3

3–6

6–9

9+

How many years of experience do you have programming in a Block Based Language such as Scratch, Blockly, Snap!, Lego
Mindstorms, etc?

Q18

Yes

No

Have you ever programmed using an Integrated Development Environment (IDE) such as VS Code, IntelliJ, Eclipse, pyCharm,
etc?

Q18a

0–3

3–6

6–9

9+

How many years of experience do you have programming with an Integrated Development Environment (IDE) such as VS Code,
IntelliJ, Eclipse, pyCharm, etc?

Import from library Add new question

Add Block



202

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 4/14

Explanation

Q1

You will be introduced to an Integrated Development Environment (IDE) for a block-
based programming language. You will then be asked some questions about the design
of the IDE.

Import from library Add new question

Add Block

Setup

Q21

In this image, you can see a partial implementation for a program. Right now, it does not matter what the purpose of this program is.

The main pane (code area) on the top right contains the blocks for the program code. Here you can see various types of blocks such
as:

Blocks to Import: "use" to import a library
Blocks to create new blocks: "class" and "action"
Control: "repeat" blocks for repetition / looping
Conditional: "if" block
I/O: input/output blocks to print to the console or receive input from the user
Exit: "return" block to return the array variable back to a calling function
Variable blocks in blue
Comment blocks in white
Blank block to represent an empty line for spacing purposes

The bottom pane (which above, says "Welcome to Quorum Studio!") has the console with output when the program runs, and it can
also show compiler errors, etc.

Import from library Add new question

Add Block

203

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 5/14

freeform_setup

Q42

In this image, you can see a freshly opened IDE with an empty code editor.

The left pane contains section tabs such as Projects (current open projects and files), Scene, Palette, and Suggestions.

 In the left pane, you can see the Suggestions tab. The Suggestions tab will provide elements that will help you write your program.

Q22

Imagine you need to write a new program. It could be anything like a recursive fibonacci function, a new game, or some statistical
analysis.

In a broad sense, what could show up in the Suggestions tab in the left pane that would help you with writing a program?

Import from library Add new question

Add Block

q1_use



204

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 6/14

Q39

Imagine you've been tasked to write a small function that will take in an integer array, prints out the even integers, and then returns
an array of the even integers to the caller.

Assume that the cursor is anywhere on the line with the green arrow.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.

Q38

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

Q54

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

q2_error



205

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 7/14

Q48

Imagine you've been tasked to write a small function that will take in an integer array, prints out the even integers, and then returns
an array of the even integers to the caller.

When a block is red, it means there is an error on the line.

Assume that the cursor is anywhere on the line with the green arrow.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.

Q49

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

Q55

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

q3_if_block



206

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 8/14

Q42

Imagine you've been tasked to write a small function that will take in an integer array, prints out the even integers, and then returns
an array of the even integers to the caller.

Assume that the cursor is in the box with the "if" statement on the line with the green arrow.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.

Q43

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

207

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 9/14

Q57

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

q4_functionCall

Q50

Imagine you've been tasked to write a small function that takes in two integers and adds them together.

Assume that the cursor is at the end of the line with the green arrow, and you need to complete the function call.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.



208

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 10/14

Q51

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

Q58

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

q5_dataframe

Q54

Imagine you're doing some statistical analysis, and need to load data into a dataframe.

Assume that the cursor is on the line with the green arrow where a new dataframe is being instantiated.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.



209

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 11/14

Q55

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

Q59

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

q6_chart



210

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 12/14

Q52

Imagine you're doing some statistical analysis, and you need to display the chart or make some edits to the chart.

Assume that the cursor is on the line with the green arrow after the colon (:) (similar to dot notation in Java or Python) and you need
to complete this line of code.

Think about which items below could be shown in the left pane that would be beneficial to your success in writing this program.

Q53

Please drag-and-drop the items below to categorize them into "HELPFUL in this context" or "NOT HELPFUL in this context."

Then, please rank the items in the "HELPFUL in this context" category, starting with 1=most helpful. You do not need to rank the
items in the "NOT HELPFUL" category:

Items

Project Files / Structure

Alert About What Problems

(red blocks) Mean & How to

Resolve

Source Control

Class Name/Library

Class Short Description (max

240 Chars)

Link to Class Documentation

Example Code

Blocks of In-Scope Variables

Blocks to Create New

Variables

Blocks for Control (Repetition

/ Loops)

Blocks for Conditionals (if /

else, etc)

Blocks of All Functions in the

Class

Blocks for I/O (Print, Input,

Clicks, etc)

Blocks to Create New Blocks

(New Class, New Function,

etc)

Blocks for Exiting (Return,

Continue, Break, etc)

Blocks to Import Additional

Libraries (use)

HELPFUL in this context

NOT HELPFUL in this context

211

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 13/14

Q60

If you have any other helpful ideas, please enter them in the box below:

Import from library Add new question

Add Block

Re-ask-freeform-text

Q46

Q47

Now that you've had more time to think about it in context, imagine you need to write a new program. It could be anything like a
recursive fibonacci function, a new game, or some statistical analysis.

In a broad sense, what could show up in the Suggestions tab that would help you with writing this function?

Import from library Add new question

Add Block

Final-ask-student





212

1/29/24, 5:22 PM Edit Survey | Qualtrics Experience Management

https://unlv.co1.qualtrics.com/survey-builder/SV_b8bbFCiyh9lqMsK/edit 14/14

Q1

Thank you for your time. If you have any additional feedback, please record it in the textbox below.

Q2

Yes

No

If you wish to enter your email address to verify you took this survey for course credit, please select "Yes" to be directed to a new
form. Your email address will not be associated with your survey responses.

Otherwise select "No" to end the survey without recording your email.

Import from library Add new question

Add Block

Professional Future Contact

Q1

Yes

No

Would you like to be contacted in the future with the results of this study or for opportunities to participate in future studies?

Import from library Add new question

Add Block

End of Survey

We thank you for your time spent taking this survey.

Your response has been recorded.



213

Bibliography

[1] E. P. Glinert, Towards’ second generation’interactive, graphical programming environments. Depart-
ment of Computer Science, Rensselaer Polytechnic Institute, 1986.

[2] D. J. Malan and H. H. Leitner, “Scratch for budding computer scientists,” in Proceedings
of the 38th SIGCSE technical symposium on Computer science education, ser. SIGCSE
’07. Association for Computing Machinery, 2007, pp. 223–227. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1227310.1227388

[3] Google, “Blockly,” https://developers.google.com/blockly, Accessed on November 24, 2023. [Online].
Available: https://developers.google.com/blockly

[4] A. Zilberman and L. Ice, “Why computer occupations are behind strong stem em-
ployment growth in the 2019–29 decade,” 2021, https://www.bls.gov/opub/btn/volume-
10/why-computer-occupations-are-behind-strong-stem-employment-growth.htm, Accessed on
September 21, 2023. [Online]. Available: https://www.bls.gov/opub/btn/volume-10/
why-computer-occupations-are-behind-strong-stem-employment-growth.htm

[5] B. A., O. A., and K. Hale, “The state of u.s. science and engineering 2022,”
2022, https://ncses.nsf.gov/pubs/nsb20221/u-s-and-global-stem-education-and-labor-force, Ac-
cessed on September 21, 2023. [Online]. Available: https://ncses.nsf.gov/pubs/nsb20221/
u-s-and-global-stem-education-and-labor-force

[6] H. Berghel, “STEM, Revisited,” Computer, vol. 47, no. 3, pp. 70–73, Mar. 2014. [Online]. Available:
https://ieeexplore.ieee.org/document/6766172

[7] H. Berghel, “STEM Crazy,” Computer, vol. 48, no. 9, pp. 75–80, Sep. 2015. [Online]. Available:
https://ieeexplore.ieee.org/document/7274416

[8] D. Weintrop, “iSchools as Venues for Expanding the K-12 Computer Science Teacher
Pipeline,” in Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education. Providence RI USA: ACM, Feb. 2022, pp. 397–403. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3478431.3499302

[9] D. Weintrop and U. Wilensky, “Transitioning from introductory block-based and text-
based environments to professional programming languages in high school computer science
classrooms,” Computers & Education, vol. 142, p. 103646, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S036013151930199X

[10] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. USA: Basic Books, Inc., 1980.

[11] S. Papert, “Constructionism: A new opportunity for elementary science education,” 1986, proposal
to the National Science Foundation.

214

https://dl.acm.org/doi/10.1145/1227310.1227388
https://dl.acm.org/doi/10.1145/1227310.1227388
https://developers.google.com/blockly
https://www.bls.gov/opub/btn/volume-10/why-computer-occupations-are-behind-strong-stem-employment-growth.htm
https://www.bls.gov/opub/btn/volume-10/why-computer-occupations-are-behind-strong-stem-employment-growth.htm
https://ncses.nsf.gov/pubs/nsb20221/u-s-and-global-stem-education-and-labor-force
https://ncses.nsf.gov/pubs/nsb20221/u-s-and-global-stem-education-and-labor-force
https://ieeexplore.ieee.org/document/6766172
https://ieeexplore.ieee.org/document/7274416
https://dl.acm.org/doi/10.1145/3478431.3499302
https://dl.acm.org/doi/10.1145/3478431.3499302
https://www.sciencedirect.com/science/article/pii/S036013151930199X

[12] F. Martin and M. Resnick, “LEGO/Logo and Electronic Bricks: Creating a Scienceland for Children,”
in Advanced Educational Technologies for Mathematics and Science, ser. NATO ASI Series, D. L.
Ferguson, Ed. Berlin, Heidelberg: Springer, 1993, pp. 61–89.

[13] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3, p. 33–35, mar 2006. [Online].
Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/1118178.1118215

[14] M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing visual programming approaches
for end-user developers: A systematic review,” IEEE Access, vol. 9, pp. 14 181–14 202, 2021.

[15] M. Tempel, “Blocks programming,” 2013, https://el.media.mit.edu/logo-
foundation/resources/papers/pdf/blocks_programming.pdf, Accessed on September 21, 2023.
[Online]. Available: https://el.media.mit.edu/logo-foundation/resources/papers/pdf/blocks_
programming.pdf

[16] D. Weintrop, “Modality matters: Understanding the Effects of Programming Language
Representation in High School Computer Science Classrooms,” Ph.D., Northwestern University,
United States – Illinois, 2016, iSBN: 9781369154825. [Online]. Available: https://www.proquest.
com/pq1academic/docview/1826352865/abstract/CA3518E64343B8PQ/1

[17] U. Wolz, H. H. Leitner, D. J. Malan, and J. Maloney, “Starting with scratch in cs 1,” in
Proceedings of the 40th ACM Technical Symposium on Computer Science Education, ser. SIGCSE
’09. New York, NY, USA: Association for Computing Machinery, 2009, p. 2–3. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/1508865.1508869

[18] J. A. Martínez-Valdés, J. A. Velázquez-Iturbide, and R. Hijón-Neira, “A (relatively)
unsatisfactory experience of use of scratch in cs1,” in Proceedings of the 5th International
Conference on Technological Ecosystems for Enhancing Multiculturality, ser. TEEM 2017.
New York, NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3144826.3145356

[19] D. Weintrop and U. Wilensky, “To block or not to block, that is the question: students’ perceptions
of blocks-based programming,” in Proceedings of the 14th International Conference on Interaction
Design and Children, ser. IDC ’15. New York, NY, USA: Association for Computing Machinery,
Jun. 2015, pp. 199–208. [Online]. Available: https://doi.org/10.1145/2771839.2771860

[20] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and S. Cooper, “Mediated transfer: Alice 3 to java,”
in Proceedings of the 43rd ACM Technical Symposium on Computer Science Education, ser. SIGCSE
’12. New York, NY, USA: Association for Computing Machinery, 2012, p. 141–146. [Online].
Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/2157136.2157180

[21] R. L. Bangert-Drowns, M. M. Hurley, and B. Wilkinson, “The Effects of School-Based
Writing-to-Learn Interventions on Academic Achievement: A Meta-Analysis,” Review of Educational
Research, vol. 74, no. 1, pp. 29–58, Mar. 2004, publisher: American Educational Research
Association. [Online]. Available: https://doi.org/10.3102/00346543074001029

[22] R. Ladner, “Expanding the pipeline: The status of persons with disabilities in the computer science
pipeline,” Jan 2021, accessed on November 18, 2023. [Online]. Available: https://cra.org/crn/2020/
11/expanding-the-pipeline-the-status-of-persons-with-disabilities-in-the-computer-science-pipeline/

215

https://doi-org.ezproxy.library.unlv.edu/10.1145/1118178.1118215
https://el.media.mit.edu/logo-foundation/resources/papers/pdf/blocks_programming.pdf
https://el.media.mit.edu/logo-foundation/resources/papers/pdf/blocks_programming.pdf
https://www.proquest.com/pq1academic/docview/1826352865/abstract/CA3518E64343B8PQ/1
https://www.proquest.com/pq1academic/docview/1826352865/abstract/CA3518E64343B8PQ/1
https://doi-org.ezproxy.library.unlv.edu/10.1145/1508865.1508869
https://doi-org.ezproxy.library.unlv.edu/10.1145/3144826.3145356
https://doi.org/10.1145/2771839.2771860
https://doi-org.ezproxy.library.unlv.edu/10.1145/2157136.2157180
https://doi.org/10.3102/00346543074001029
https://cra.org/crn/2020/11/expanding-the-pipeline-the-status-of-persons-with-disabilities-in-the-computer-science-pipeline/
https://cra.org/crn/2020/11/expanding-the-pipeline-the-status-of-persons-with-disabilities-in-the-computer-science-pipeline/

[23] N. Turner Lee, P. Resnick, and G. Barton, “Algorithmic bias detection and miti-
gation: Best practices and policies to reduce consumer harms,” May 2019, ac-
cessed on November 18, 2023. [Online]. Available: https://www.brookings.edu/articles/
algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/

[24] C. Boutin, “There’s more to ai bias than biased data, nist report highlights,” Mar
2022, https://www.nist.gov/news-events/news/2022/03/theres-more-ai-bias-biased-data-nist-report-
highlights, Accessed on November 18, 2023. [Online]. Available: https://www.nist.gov/news-events/
news/2022/03/theres-more-ai-bias-biased-data-nist-report-highlights

[25] P. G. Feijóo-García, S. Wang, J. Cai, N. Polavarapu, C. Gardner-McCune, and E. D. Ragan, “Design
and evaluation of a scaffolded block-based learning environment for hierarchical data structures,” in
2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2019, pp.
145–149.

[26] P. G. Feijóo-García, A. Kapoor, C. Gardner-McCune, and E. Ragan, “Effects of a block-based scaf-
folded tool on students’ introduction to hierarchical data structures,” IEEE Transactions on Educa-
tion, vol. 65, no. 2, pp. 191–199, 2022.

[27] K. Brennan and M. Resnick, “New frameworks for studying and assessing the development of compu-
tational thinking,” in Proceedings of the 2012 annual meeting of the American educational research
association, Vancouver, Canada, vol. 1, 2012, p. 25.

[28] S. Grover, R. Pea, and S. Cooper, “Designing for deeper learning in a blended computer science
course for middle school students,” Computer Science Education, vol. 25, no. 2, pp. 199–237, 2015,
publisher: Routledge _eprint: https://doi.org/10.1080/08993408.2015.1033142. [Online]. Available:
https://doi.org/10.1080/08993408.2015.1033142

[29] K. N. Whitley, “Visual programming languages and the empirical evidence for and against,”
Journal of Visual Languages & Computing, vol. 8, no. 1, pp. 109–142, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900300

[30] Epic, “Unreal blueprints,” https://docs.unrealengine.com/4.27/en-
US/ProgrammingAndScripting/Blueprints, Accessed on October 07, 2023. [Online]. Available:
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints

[31] T. Sharma, S. Georgiou, M. Kechagia, T. A. Ghaleb, and F. Sarro, “Investigating developers’
perception on software testability and its effects,” Empirical Software Engineering, vol. 28, no. 5, p.
120, 2023. [Online]. Available: https://doi.org/10.1007/s10664-023-10373-0

[32] K. N. Whitley and A. F. Blackwell, “Visual programming: the outlook from academia and
industry,” in Papers presented at the seventh workshop on Empirical studies of programmers,
ser. ESP ’97. Association for Computing Machinery, 1997, pp. 180–208. [Online]. Available:
https://dl.acm.org/doi/10.1145/266399.266415

[33] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F. Adeputra,
and J. J. LaViola, “Code bubbles: a working set-based interface for code understanding and
maintenance,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’10. Association for Computing Machinery, 2010, pp. 2503–2512. [Online]. Available:
https://dl.acm.org/doi/10.1145/1753326.1753706

216

https://www.brookings.edu/articles/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
https://www.brookings.edu/articles/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
https://www.nist.gov/news-events/news/2022/03/theres-more-ai-bias-biased-data-nist-report-highlights
https://www.nist.gov/news-events/news/2022/03/theres-more-ai-bias-biased-data-nist-report-highlights
https://doi.org/10.1080/08993408.2015.1033142
https://www.sciencedirect.com/science/article/pii/S1045926X96900300
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints
https://doi.org/10.1007/s10664-023-10373-0
https://dl.acm.org/doi/10.1145/266399.266415
https://dl.acm.org/doi/10.1145/1753326.1753706

[34] L. Gewali, personal communication, Apr. 2024.

[35] S. Tanimoto and E. Glinert, “Pict: An interactive graphical programming environment,” Computer,
vol. 17, no. 11, pp. 7–25, nov 1984.

[36] J. Vento, “Application of labview in higher education laboratories,” in Proceedings Frontiers in Edu-
cation Conference, 1988, pp. 444–447.

[37] D. M. Gee, “Formal specification of visual languages,” Information and Software Technology, vol. 40,
no. 7, pp. 359–367, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584998000597

[38] J. V. Nickerson, Visual programming. New York University, 1994,
http://www.nickerson.to/visprog/visprog.htm, Accessed on September 2, 2023.

[39] M. A. Jackson, “Constructive methods of program design,” in ECI Conference 1976, ser. Lecture
notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1976, pp. 236–262.

[40] W. R. Sutherland, “The on-line graphical specification of computer procedures.” Thesis,
Massachusetts Institute of Technology, 1966, accepted: 2005-09-21T22:40:43Z. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/13474

[41] MIT, “Logo history,” https://el.media.mit.edu/logo-foundation/what_is_logo/history.html, Ac-
cessed on November 05, 2023. [Online]. Available: https://el.media.mit.edu/logo-foundation/what_
is_logo/history.html

[42] P. Boytchev, “The logo tree project,” https://pavel.it.fmi.uni-sofia.bg/logotree/table.html, Accessed
on November 05, 2023. [Online]. Available: https://pavel.it.fmi.uni-sofia.bg/logotree/table.html

[43] A. Begel, “Logoblocks: A graphical programming language for interacting with the world,” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, vol. 2, 1996.

[44] B. A. Myers, “Visual programming, programming by example, and program visualization:
A taxonomy,” SIGCHI Bull., vol. 17, no. 4, p. 59–66, apr 1986. [Online]. Available:
https://doi.org/10.1145/22339.22349

[45] J. H. Kaas and P. Balaram, “Current research on the organization and function of the visual system
in primates.” 2014.

[46] L. R. Milne, “Blocks4All: making block programming languages accessible for blind children,”
ACM SIGACCESS Accessibility and Computing, no. 117, pp. 26–29, Feb. 2017. [Online]. Available:
https://doi.org/10.1145/3051519.3051525

[47] A. Stefik, W. Allee, G. Contreras, T. Kluthe, A. Hoffman, B. Blaser, and R. Ladner,
“Accessible to whom? bringing accessibility to blocks,” in Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2024. New York,
NY, USA: Association for Computing Machinery, 2024, p. 1286–1292. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3626252.3630770

[48] A. Mountapmbeme, O. Okafor, and S. Ludi, “Accessible Blockly: An Accessible Block-Based
Programming Library for People with Visual Impairments,” in Proceedings of the 24th International
ACM SIGACCESS Conference on Computers and Accessibility, ser. ASSETS ’22. New York,
NY, USA: Association for Computing Machinery, Oct. 2022, pp. 1–15. [Online]. Available:
https://doi.org/10.1145/3517428.3544806

217

https://www.sciencedirect.com/science/article/pii/S0950584998000597
https://www.sciencedirect.com/science/article/pii/S0950584998000597
https://dspace.mit.edu/handle/1721.1/13474
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://pavel.it.fmi.uni-sofia.bg/logotree/table.html
https://doi.org/10.1145/22339.22349
https://doi.org/10.1145/3051519.3051525
https://doi-org.ezproxy.library.unlv.edu/10.1145/3626252.3630770
https://doi.org/10.1145/3517428.3544806

[49] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: programming for all,”
Communications of the ACM, vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
https://dl.acm.org/doi/10.1145/1592761.1592779

[50] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-d tool for introductory programming concepts,”
Journal of Computing Sciences in Colleges - JCSC, vol. 15, no. 5, p. 107–116, 01 2000.

[51] E. Coronado, F. Mastrogiovanni, B. Indurkhya, and G. Venture, “Visual programming
environments for end-user development of intelligent and social robots, a systematic review,”
Journal of Computer Languages, vol. 58, p. 100970, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2590118420300307

[52] Unity, “Unity visual scripting,” 2023, https://unity.com/features/unity-visual-scripting, Accessed on
October 07, 2023. [Online]. Available: https://unity.com/features/unity-visual-scripting

[53] M. Mohd Azmi, K. Lim, P. Mohan, and T. Kit, “UNITEN Smart Programming Apps Using Combi-
nation of Robotic and Block Programming (RoBlock),” in 2021 IEEE International Conference on
Computing (ICOCO), Nov. 2021, pp. 202–207.

[54] A. C. Bart, J. Tibau, D. Kafura, C. A. Shaffer, and E. Tilevich, “Design and Evaluation of a Block-
based Environment with a Data Science Context,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 8, no. 1, pp. 182–192, Jan. 2020, conference Name: IEEE Transactions on Emerging
Topics in Computing.

[55] L. Barboza, R. Mello, M. Modell, and E. S. Teixeira, “Blockly-DS: Blocks Programming
for Data Science with Visual, Statistical, Descriptive and Predictive Analysis,” in LAK23:
13th International Learning Analytics and Knowledge Conference, ser. LAK2023. New York,
NY, USA: Association for Computing Machinery, Mar. 2023, pp. 644–649. [Online]. Available:
https://doi.org/10.1145/3576050.3576097

[56] P. d. L. Sobreira, J. W. Abijaude, H. D. G. Viana, L. M. S. Santiago, K. E. Guemhioui, O. A. Wahab,
and F. Greve, “Usability evaluation of block programming tools in IoT contexts for initial engineering
courses,” in 2020 IEEE World Conference on Engineering Education (EDUNINE), Mar. 2020, pp.
1–5.

[57] W. Underwood, D. Weintrop, M. Kurtz, and R. Marciano, “Introducing Computational
Thinking into Archival Science Education,” in 2018 IEEE International Conference on Big
Data (Big Data). Seattle, WA, USA: IEEE, Dec. 2018, pp. 2761–2765. [Online]. Available:
https://ieeexplore.ieee.org/document/8622511/

[58] A. Feng, E. Tilevich, and W.-c. Feng, “Block-based programming abstractions for explicit parallel
computing,” in 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond), Oct. 2015, pp. 71–75.

[59] A. L. V. Solórzano and A. S. Charão, “BlocklyPar: from sequential to parallel with block-based visual
programming,” in 2021 IEEE Frontiers in Education Conference (FIE), Oct. 2021, pp. 1–8, iSSN:
2377-634X.

[60] M. Verano Merino, J. P. Sáenz, and A. M. Díaz Castillo, “Suppose You Had Blocks within a
Notebook,” in Proceedings of the 1st ACM SIGPLAN International Workshop on Programming
Abstractions and Interactive Notations, Tools, and Environments, ser. PAINT 2022. New York,

218

https://dl.acm.org/doi/10.1145/1592761.1592779
https://www.sciencedirect.com/science/article/pii/S2590118420300307
https://www.sciencedirect.com/science/article/pii/S2590118420300307
https://unity.com/features/unity-visual-scripting
https://doi.org/10.1145/3576050.3576097
https://ieeexplore.ieee.org/document/8622511/

NY, USA: Association for Computing Machinery, Dec. 2022, pp. 57–62. [Online]. Available:
https://doi.org/10.1145/3563836.3568728

[61] M. Verano Merino and K. van Wijk, “Workbench for Creating Block-Based Environments,” in
Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering,
ser. SLE 2022. New York, NY, USA: Association for Computing Machinery, Dec. 2022, pp. 61–73.
[Online]. Available: https://doi.org/10.1145/3567512.3567518

[62] M. Kazemitabaar, V. Chyhir, D. Weintrop, and T. Grossman, “Scaffolding Progress: How Structured
Editors Shape Novice Errors When Transitioning from Blocks to Text,” SIGCSE 2023: Proceedings
of the 54th ACM Technical Symposium on Computer Science Education, 2023.

[63] “Web content accessibility guidelines (wcag) 2.2,” https://www.w3.org/TR/WCAG22/, Accessed on
Oct 04, 2023. [Online]. Available: https://www.w3.org/TR/WCAG22/

[64] T. R. Green and M. Petre, “When visual programs are harder to read than textual programs,” in
Human-Computer Interaction: Tasks and Organisation, Proceedings ECCE-6 (6th European Confer-
ence Cognitive Ergonomics), vol. 57, 1992.

[65] H. Berghel, “New wave prototyping: use and abuse of vacuous prototypes,” interactions, vol. 1, no. 2,
pp. 49–54, 1994.

[66] B. Harvey, “Bringing "no ceiling" to scratch: Can one language serve kids and computer
scientists?” in Bringing "No Ceiling" to Scratch: Can One Language Serve Kids
and Computer Scientists?, 2010, https://api.semanticscholar.org/CorpusID:62609287. [Online].
Available: https://api.semanticscholar.org/CorpusID:62609287

[67] N. Fraser, “Ten things we’ve learned from blockly,” in 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond), 2015, pp. 49–50.

[68] Code.org, “Learn computer science. change the world.” https://code.org/, Accessed on October 02,
2023. [Online]. Available: https://code.org/

[69] J. Devine, J. Finney, P. de Halleux, M. Moskal, T. Ball, and S. Hodges, “Makecode and
codal: Intuitive and efficient embedded systems programming for education,” in Proceedings of the
19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems, ser. LCTES 2018. New York, NY, USA: Association for Computing Machinery,
2018, p. 19–30. [Online]. Available: https://doi.org/10.1145/3211332.3211335

[70] C. Scaffidi and C. Chambers, “Skill progression demonstrated by users in the scratch animation
environment,” International Journal of Human–Computer Interaction, vol. 28, no. 6, pp. 383–398,
2012. [Online]. Available: https://doi.org/10.1080/10447318.2011.595621

[71] P. Grabarczyk, S. M. Nicolajsen, and C. Brabrand, “On the effect of onboarding computing
students without programming-confidence or -experience,” in Proceedings of the 22nd Koli
Calling International Conference on Computing Education Research, ser. Koli Calling ’22.
New York, NY, USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3564721.3564724

[72] D. Hagan and S. Markham, “Does it help to have some programming experience before
beginning a computing degree program?” in Proceedings of the 5th Annual SIGCSE/SIGCUE

219

https://doi.org/10.1145/3563836.3568728
https://doi.org/10.1145/3567512.3567518
https://www.w3.org/TR/WCAG22/
https://api.semanticscholar.org/CorpusID:62609287
https://code.org/
https://doi.org/10.1145/3211332.3211335
https://doi.org/10.1080/10447318.2011.595621
https://doi-org.ezproxy.library.unlv.edu/10.1145/3564721.3564724

ITiCSEconference on Innovation and Technology in Computer Science Education, ser. ITiCSE ’00.
New York, NY, USA: Association for Computing Machinery, 2000, p. 25–28. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/343048.343063

[73] J. R. Davy, K. Audin, M. Barkham, and C. Joyner, “Student well-being in a computing
department,” in Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSEconference on
Innovation and Technology in Computer Science Education, ser. ITiCSE ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 136–139. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/343048.343145

[74] C. Alvarado, G. Umbelino, and M. Minnes, “The persistent effect of pre-college computing
experience on college cs course grades,” in Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 876–881. [Online]. Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/
3159450.3159508

[75] G. Bui, N. Sibia, A. Zavaleta Bernuy, M. Liut, and A. Petersen, “Prior programming
experience: A persistent performance gap in cs1 and cs2,” in Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1, ser. SIGCSE 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p. 889–895. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3545945.3569752

[76] S. Krause-Levy, S. Valstar, L. Porter, and W. G. Griswold, “A demographic analysis on
prerequisite preparation in an advanced data structures course,” in Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education - Volume 1, ser. SIGCSE 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p. 661–667. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3478431.3499337

[77] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning computer science concepts with
scratch,” in Proceedings of the Sixth International Workshop on Computing Education Research, ser.
ICER ’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 69–76. [Online].
Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/1839594.1839607

[78] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of programming in scratch,” in
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’11. New York, NY, USA: Association for Computing Machinery, 2011, p.
168–172. [Online]. Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/1999747.1999796

[79] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From scratch to "real" programming,”
ACM Trans. Comput. Educ., vol. 14, no. 4, Feb 2015. [Online]. Available: https:
//doi-org.ezproxy.library.unlv.edu/10.1145/2677087

[80] C. M. Lewis, “How programming environment shapes perception, learning and goals: Logo vs.
scratch,” in Proceedings of the 41st ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 346–350.
[Online]. Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/1734263.1734383

[81] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The scratch programming
language and environment,” ACM Transactions on Computing Education, vol. 10, no. 4, pp.
16:1–16:15, 2010. [Online]. Available: https://dl.acm.org/doi/10.1145/1868358.1868363

220

https://doi-org.ezproxy.library.unlv.edu/10.1145/343048.343063
https://doi-org.ezproxy.library.unlv.edu/10.1145/343048.343145
https://doi-org.ezproxy.library.unlv.edu/10.1145/3159450.3159508
https://doi-org.ezproxy.library.unlv.edu/10.1145/3159450.3159508
https://doi-org.ezproxy.library.unlv.edu/10.1145/3545945.3569752
https://doi-org.ezproxy.library.unlv.edu/10.1145/3478431.3499337
https://doi-org.ezproxy.library.unlv.edu/10.1145/1839594.1839607
https://doi-org.ezproxy.library.unlv.edu/10.1145/1999747.1999796
https://doi-org.ezproxy.library.unlv.edu/10.1145/2677087
https://doi-org.ezproxy.library.unlv.edu/10.1145/2677087
https://doi-org.ezproxy.library.unlv.edu/10.1145/1734263.1734383
https://dl.acm.org/doi/10.1145/1868358.1868363

[82] S. Cooper, “The design of alice,” ACM Transactions on Computing Education, vol. 10, no. 4, pp.
15:1–15:16, 2010. [Online]. Available: https://dl.acm.org/doi/10.1145/1868358.1868362

[83] T. W. Price and T. Barnes, “Comparing Textual and Block Interfaces in a Novice Programming
Environment,” in Proceedings of the eleventh annual International Conference on International
Computing Education Research, ser. ICER ’15. New York, NY, USA: Association for Computing
Machinery, Aug. 2015, pp. 91–99. [Online]. Available: https://doi.org/10.1145/2787622.2787712

[84] D. Weintrop and U. Wilensky, “Comparing Block-Based and Text-Based Programming in High
School Computer Science Classrooms,” ACM Transactions on Computing Education, vol. 18, no. 1,
pp. 3:1–3:25, Oct. 2017. [Online]. Available: https://doi.org/10.1145/3089799

[85] M. Seraj, E.-S. Katterfeldt, K. Bub, S. Autexier, and R. Drechsler, “Scratch and Google Blockly:
How Girls’ Programming Skills and Attitudes are Influenced,” in Proceedings of the 19th Koli
Calling International Conference on Computing Education Research, ser. Koli Calling ’19. New
York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3364510.3364515

[86] D. Sun, C. Zhu, F. Xu, Y. Li, F. Ouyang, and M. Chen, “Transitioning from introductory to
professional programming in secondary education: Comparing learners’ computational thinking skills,
behaviors, and attitudes,” Journal of Educational Computing Research, p. 07356331231204653, 2023,
publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/07356331231204653

[87] H. Dwyer, C. Hill, A. Hansen, A. Iveland, D. Franklin, and D. Harlow, “Fourth Grade Students
Reading Block-Based Programs: Predictions, Visual Cues, and Affordances,” in Proceedings of
the eleventh annual International Conference on International Computing Education Research, ser.
ICER ’15. New York, NY, USA: Association for Computing Machinery, Aug. 2015, pp. 111–119.
[Online]. Available: https://doi.org/10.1145/2787622.2787729

[88] A. Stefik and E. Gellenbeck, “Empirical studies on programming language stimuli,” Software
Quality Journal, vol. 19, no. 1, pp. 65–99, Mar. 2011. [Online]. Available: https:
//doi.org/10.1007/s11219-010-9106-7

[89] A. Stefik and S. Siebert, “An empirical investigation into programming language syntax,”
ACM Trans. Comput. Educ., vol. 13, no. 4, nov 2013. [Online]. Available: https:
//doi-org.ezproxy.library.unlv.edu/10.1145/2534973

[90] D. Weintrop, “Minding the Gap Between Blocks-Based and Text-Based Programming (Abstract
Only),” in Proceedings of the 46th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’15. New York, NY, USA: Association for Computing Machinery, Feb. 2015, p. 720.
[Online]. Available: https://doi.org/10.1145/2676723.2693622

[91] R. E. Mayer, “Should There Be a Three-Strikes Rule Against Pure Discovery Learning?” American
Psychologist, vol. 59, no. 1, pp. 14–19, 2004. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=
10.1037/0003-066X.59.1.14

[92] P. Techapalokul and E. Tilevich, “Understanding recurring quality problems and their impact on code
sharing in block-based software,” in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Oct. 2017, pp. 43–51, iSSN: 1943-6106.

221

https://dl.acm.org/doi/10.1145/1868358.1868362
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/3089799
https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1177/07356331231204653
https://doi.org/10.1145/2787622.2787729
https://doi.org/10.1007/s11219-010-9106-7
https://doi.org/10.1007/s11219-010-9106-7
https://doi-org.ezproxy.library.unlv.edu/10.1145/2534973
https://doi-org.ezproxy.library.unlv.edu/10.1145/2534973
https://doi.org/10.1145/2676723.2693622
http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.59.1.14
http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.59.1.14

[93] P. Techapalokul, “Sniffing Through Millions of Blocks for Bad Smells,” in Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE ’17. New York,
NY, USA: Association for Computing Machinery, Mar. 2017, pp. 781–782. [Online]. Available:
https://doi.org/10.1145/3017680.3022450

[94] E. Aivaloglou and F. Hermans, “How Kids Code and How We Know: An Exploratory Study on
the Scratch Repository,” in Proceedings of the 2016 ACM Conference on International Computing
Education Research, ser. ICER ’16. New York, NY, USA: Association for Computing Machinery,
Aug. 2016, pp. 53–61. [Online]. Available: https://doi.org/10.1145/2960310.2960325

[95] L. Moors, A. Luxton-Reilly, and P. Denny, “Transitioning from Block-Based to Text-Based Program-
ming Languages,” in 2018 International Conference on Learning and Teaching in Computing and
Engineering (LaTICE), Apr. 2018, pp. 57–64, iSSN: 2475-1057.

[96] A. Mountapmbeme and S. Ludi, “How Teachers of the Visually Impaired Compensate with
the Absence of Accessible Block-Based Languages,” in Proceedings of the 23rd International
ACM SIGACCESS Conference on Computers and Accessibility, ser. ASSETS ’21. New York,
NY, USA: Association for Computing Machinery, Oct. 2021, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3441852.3471221

[97] A. Mountapmbeme, O. Okafor, and S. Ludi, “Accessible Blockly: An Accessible Block-Based
Programming Library for People with Visual Impairments,” in Proceedings of the 24th International
ACM SIGACCESS Conference on Computers and Accessibility, ser. ASSETS ’22. New York,
NY, USA: Association for Computing Machinery, Oct. 2022, pp. 1–15. [Online]. Available:
https://doi.org/10.1145/3517428.3544806

[98] Z. Wang and A. Wagner, “Evaluating a Tactile Approach to Programming Scratch,” in
Proceedings of the 2019 ACM Southeast Conference, ser. ACM SE ’19. New York, NY,
USA: Association for Computing Machinery, Apr. 2019, pp. 226–229. [Online]. Available:
https://dl.acm.org/doi/10.1145/3299815.3314464

[99] J. Asbell-Clarke, T. Robillard, T. Edwards, E. Bardar, D. Weintrop, S. Grover, and M. Israel,
“Including Neurodiversity in Foundational and Applied Computational Thinking (INFACT),” in
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2, ser.
SIGCSE 2022. New York, NY, USA: Association for Computing Machinery, Mar. 2022, p. 1076.
[Online]. Available: https://dl.acm.org/doi/10.1145/3478432.3499044

[100] A. Ismail, N. Omar, and A. Mohd Zin, “Developing learning software for children with learning dis-
abilities through Block-Based development approach,” in 2009 International Conference on Electrical
Engineering and Informatics, vol. 01, Aug. 2009, pp. 299–303, iSSN: 2155-6830.

[101] O. Okafor and S. Ludi, “Voice-Enabled Blockly: Usability Impressions of a Speech-driven Block-based
Programming System,” in Proceedings of the 24th International ACM SIGACCESS Conference on
Computers and Accessibility, ser. ASSETS ’22. New York, NY, USA: Association for Computing
Machinery, Oct. 2022, pp. 1–5. [Online]. Available: https://doi.org/10.1145/3517428.3550382

[102] D. Weintrop, “Block-based programming in computer science education,” Commun. ACM, vol. 62,
no. 8, p. 22–25, jul 2019. [Online]. Available: https://doi.org/10.1145/3341221

[103] H. Alrubaye, S. Ludi, and M. W. Mkaouer, “Comparison of block-based and hybrid-based environ-
ments in transferring programming skills to text-based environments,” in Proceedings of the 29th

222

https://doi.org/10.1145/3017680.3022450
https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1145/3441852.3471221
https://doi.org/10.1145/3517428.3544806
https://dl.acm.org/doi/10.1145/3299815.3314464
https://dl.acm.org/doi/10.1145/3478432.3499044
https://doi.org/10.1145/3517428.3550382
https://doi.org/10.1145/3341221

Annual International Conference on Computer Science and Software Engineering, ser. CASCON ’19.
USA: IBM Corp., Nov. 2019, pp. 100–109.

[104] J. N. Matias, S. Dasgupta, and B. M. Hill, “Skill Progression in Scratch Revisited,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems, ser. CHI ’16. New York,
NY, USA: Association for Computing Machinery, May 2016, pp. 1486–1490. [Online]. Available:
https://doi.org/10.1145/2858036.2858349

[105] D. M. Kurland and R. D. Pea, “Children’s mental models of recursive logo programs,” Journal of
Educational Computing Research, vol. 1, no. 2, pp. 235–243, 1985, publisher: SAGE Publications
Inc. [Online]. Available: https://doi.org/10.2190/JV9Y-5PD0-MX22-9J4Y

[106] D. Parsons and P. Haden, “Programming osmosis: Knowledge transfer from imperative to visual
programming environments,” in Procedings of The Twentieth Annual NACCQ Conference, Hamilton
New Zealand, 2007, vol. 209.

[107] P. Kinnunen and L. Malmi, “Why students drop out CS1 course?” in Proceedings of the
second international workshop on Computing education research, ser. ICER ’06. New York,
NY, USA: Association for Computing Machinery, Sep. 2006, pp. 97–108. [Online]. Available:
https://dl.acm.org/doi/10.1145/1151588.1151604

[108] D. Bau, “Droplet, a blocks-based editor for text code,” J. Comput. Sci. Coll., vol. 30, no. 6, p.
138–144, jun 2015.

[109] D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil code: Block code for a text world,” in
Proceedings of the 14th International Conference on Interaction Design and Children, ser. IDC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p. 445–448. [Online]. Available:
https://doi.org/10.1145/2771839.2771875

[110] D. Weintrop and U. Wilensky, “Between a Block and a Typeface: Designing and Evaluating Hybrid
Programming Environments,” in Proceedings of the 2017 Conference on Interaction Design and
Children, ser. IDC ’17. New York, NY, USA: Association for Computing Machinery, Jun. 2017,
pp. 183–192. [Online]. Available: https://doi.org/10.1145/3078072.3079715

[111] M. Krafft, G. Fraser, and N. Walkinshaw, “Motivating Adult Learners by Introducing Programming
Concepts with Scratch,” in Proceedings of the 4th European Conference on Software Engineering
Education, ser. ECSEE ’20. New York, NY, USA: Association for Computing Machinery, Jun.
2020, pp. 22–26. [Online]. Available: https://dl.acm.org/doi/10.1145/3396802.3396818

[112] G. Weber, “Code is not just text: Why our code editors are inadequate tools,” in Companion
Proceedings of the 1st International Conference on the Art, Science, and Engineering of Programming,
ser. Programming ’17. Association for Computing Machinery, 2017, pp. 1–3. [Online]. Available:
https://dl.acm.org/doi/10.1145/3079368.3079415

[113] M. Lodi, “Informatical Thinking,” OLYMPIADS IN INFORMATICS, pp. 113–132, Dec. 2020.
[Online]. Available: https://ioinformatics.org/journal/v14_2020_113_132.pdf

[114] L. Zhang and J. Nouri, “A systematic review of learning computational thinking through
scratch in k-9,” Computers & Education, vol. 141, p. 103607, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131519301605

223

https://doi.org/10.1145/2858036.2858349
https://doi.org/10.2190/JV9Y-5PD0-MX22-9J4Y
https://dl.acm.org/doi/10.1145/1151588.1151604
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/3078072.3079715
https://dl.acm.org/doi/10.1145/3396802.3396818
https://dl.acm.org/doi/10.1145/3079368.3079415
https://ioinformatics.org/journal/v14_2020_113_132.pdf
https://www.sciencedirect.com/science/article/pii/S0360131519301605

[115] J. M. Wing and D. Stanzione, “Progress in computational thinking, and expanding the
hpc community,” Commun. ACM, vol. 59, no. 7, p. 10–11, jun 2016. [Online]. Available:
https://doi.org/10.1145/2933410

[116] S. Grover and R. Pea, “Computational Thinking in K–12: A Review of the State of the
Field,” Educational Researcher, vol. 42, no. 1, pp. 38–43, Jan. 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.3102/0013189X12463051

[117] L. Blum and T. J. Cortina, “Cs4hs: An outreach program for high school cs teachers,” SIGCSE Bull.,
vol. 39, no. 1, p. 19–23, mar 2007. [Online]. Available: https://doi.org/10.1145/1227504.1227320

[118] A. Siraj, M. J. Kosa, and S.-M. Olmstead, “Weaving a tapestry: Creating a satellite
workshop to support hs cs teachers in attracting and engaging students,” in Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education, ser. SIGCSE ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 493–498. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/2157136.2157282

[119] H. Bort and D. Brylow, “Cs4impact: Measuring computational thinking concepts present in cs4hs
participant lesson plans,” in Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’13. New York, NY, USA: Association for Computing Machinery, 2013, p.
427–432. [Online]. Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/2445196.2445323

[120] J. M. Dodero, J. M. Mota, and I. Ruiz-Rube, “Bringing computational thinking to teachers’ training:
a workshop review,” in Proceedings of the 5th International Conference on Technological Ecosystems
for Enhancing Multiculturality, ser. TEEM 2017. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 1–6. [Online]. Available: https://dl.acm.org/doi/10.1145/3144826.3145352

[121] N. Tumlin, “Teacher Configurable Coding Challenges for Block Languages,” in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE ’17. New
York, NY, USA: Association for Computing Machinery, Mar. 2017, pp. 783–784. [Online]. Available:
https://doi.org/10.1145/3017680.3022467

[122] S. Grover, V. Cateté, T. Barnes, M. Hill, A. Ledeczi, and B. Broll, “FIRST Principles to Design for
Online, Synchronous High School CS Teacher Training and Curriculum Co-Design,” in Proceedings
of the 20th Koli Calling International Conference on Computing Education Research, ser. Koli
Calling ’20. New York, NY, USA: Association for Computing Machinery, Nov. 2020, pp. 1–5.
[Online]. Available: https://dl.acm.org/doi/10.1145/3428029.3428059

[123] P. Rayavaram, A. Jagadeesha, S. Narain, and C. S. Lee, “Designing a Visual Cryptography
Curriculum for K-12 Education,” in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 2, ser. SIGCSE 2023. New York, NY, USA: Association for Computing
Machinery, Mar. 2023, p. 1319. [Online]. Available: https://doi.org/10.1145/3545947.3576266

[124] L. Zhang, J. Nouri, and L. Rolandsson, “Progression Of Computational Thinking Skills
In Swedish Compulsory Schools With Block-based Programming,” in Proceedings of the
Twenty-Second Australasian Computing Education Conference, ser. ACE’20. New York, NY,
USA: Association for Computing Machinery, Feb. 2020, pp. 66–75. [Online]. Available:
https://doi.org/10.1145/3373165.3373173

[125] A. Milliken, V. Cateté, A. Limke, I. Gransbury, H. Chipman, Y. Dong, and T. Barnes, “Exploring
and Influencing Teacher Grading for Block-based Programs through Rubrics and the GradeSnap

224

https://doi.org/10.1145/2933410
http://journals.sagepub.com/doi/10.3102/0013189X12463051
https://doi.org/10.1145/1227504.1227320
https://doi-org.ezproxy.library.unlv.edu/10.1145/2157136.2157282
https://doi-org.ezproxy.library.unlv.edu/10.1145/2445196.2445323
https://dl.acm.org/doi/10.1145/3144826.3145352
https://doi.org/10.1145/3017680.3022467
https://dl.acm.org/doi/10.1145/3428029.3428059
https://doi.org/10.1145/3545947.3576266
https://doi.org/10.1145/3373165.3373173

Tool,” in Proceedings of the 17th ACM Conference on International Computing Education Research,
ser. ICER 2021. New York, NY, USA: Association for Computing Machinery, Aug. 2021, pp.
101–114. [Online]. Available: https://doi.org/10.1145/3446871.3469762

[126] N. Körber, “Anomaly detection in scratch assignments,” in Proceedings of the 43rd International
Conference on Software Engineering: Companion Proceedings, ser. ICSE ’21. Virtual Event,
Spain: IEEE Press, Nov. 2021, pp. 111–113. [Online]. Available: https://doi.org/10.1109/
ICSE-Companion52605.2021.00050

[127] D. Shepherd, P. Francis, D. Weintrop, D. Franklin, B. Li, and A. Afzal, “[engineering paper] an ide for
easy programming of simple robotics tasks,” in 2018 IEEE 18th International Working Conference
on Source Code Analysis and Manipulation (SCAM), 2018, pp. 209–214.

[128] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly goes to work: Block-based
programming for industrial robots,” in 2017 IEEE Blocks and Beyond Workshop (B&B), Oct. 2017,
pp. 29–36.

[129] N. Ritschel, V. Kovalenko, R. Holmes, R. Garcia, and D. C. Shepherd, “Comparing Block-Based
Programming Models for Two-Armed Robots,” IEEE Transactions on Software Engineering, vol. 48,
no. 5, pp. 1630–1643, May 2022, conference Name: IEEE Transactions on Software Engineering.

[130] H. L. Tan, C. C. Wong, J. N. M. Kho, and S. Hoh, “Simple Mobility Configurator: Block Programming
for the Non-Experts,” in 2008 4th International Conference on Wireless Communications, Networking
and Mobile Computing, Oct. 2008, pp. 1–4, iSSN: 2161-9654.

[131] N. Ritschel, F. Fronchetti, R. Holmes, R. Garcia, and D. C. Shepherd, “Enabling end-users to
implement larger block-based programs,” in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings, ser. ICSE ’22. New York,
NY, USA: Association for Computing Machinery, Oct. 2022, pp. 347–349. [Online]. Available:
https://doi.org/10.1145/3510454.3528644

[132] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring program comprehension: A
large-scale field study with professionals,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), 2018, pp. 584–584, ISSN: 1558-1225.

[133] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and answer sites for automatic
comment generation,” in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2013, pp. 562–567.

[134] Y. Gao, H. Zhang, and C. Lyu, “EnCoSum: enhanced semantic features for multi-scale multi-modal
source code summarization,” Empirical Software Engineering, vol. 28, no. 5, p. 126, 2023. [Online].
Available: https://doi.org/10.1007/s10664-023-10384-x

[135] R. A. Boyd and S. E. Barbosa, “Reinforcement learning for all: An implementation using unreal
engine blueprint,” in 2017 International Conference on Computational Science and Computational
Intelligence (CSCI), 2017, pp. 787–792.

[136] P. Gestwicki, “Unreal engine 4 for computer scientists,” J. Comput. Sci. Coll., vol. 35, no. 5, p.
109–110, oct 2019.

225

https://doi.org/10.1145/3446871.3469762
https://doi.org/10.1109/ICSE-Companion52605.2021.00050
https://doi.org/10.1109/ICSE-Companion52605.2021.00050
https://doi.org/10.1145/3510454.3528644
https://doi.org/10.1007/s10664-023-10384-x

[137] D. Asenov and P. Muller, “Envision: A fast and flexible visual code editor with fluid
interactions (overview),” in 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2014, pp. 9–12, ISSN: 1943-6106. [Online]. Available: https:
//ieeexplore.ieee.org/document/6883014

[138] S. Norhudha Sarif, S. Idris, and A. M. Zin, “The design of blocks integration tool to
support end-user programming,” in Proceedings of the 2011 International Conference on
Electrical Engineering and Informatics, Jul. 2011, pp. 1–5, iSSN: 2155-6830. [Online]. Available:
https://ieeexplore.ieee.org/document/6021657

[139] C. Kyfonidis, N. Moumoutzis, and S. Christodoulakis, “Block-C: A block-based programming teaching
tool to facilitate introductory C programming courses,” in 2017 IEEE Global Engineering Education
Conference (EDUCON), Apr. 2017, pp. 570–579, iSSN: 2165-9567.

[140] Y. Lin and D. Weintrop, “The landscape of block-based programming: Characteristics of
block-based environments and how they support the transition to text-based programming,”
Journal of Computer Languages, vol. 67, p. 101075, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S259011842100054X

[141] “Blockpy,” https://think.cs.vt.edu/blockpy/blockpy, Accessed on February 18, 2023. [Online].
Available: https://think.cs.vt.edu/blockpy/blockpy

[142] C. M. Leon, E. Aizpurua, and S. van der Valk, “Agree or disagree: Does it matter which comes
first? an examination of scale direction effects in a multi-device online survey,” Field Methods,
vol. 34, no. 2, pp. 125–142, 2022. [Online]. Available: https://doi.org/10.1177/1525822X211012259

[143] F. Funke, U.-D. Reips, and R. K. Thomas, “Sliders for the smart: Type of rating scale on the web
interacts with educational level,” Social Science Computer Review, vol. 29, no. 2, pp. 221–231, 2011.
[Online]. Available: https://doi.org/10.1177/0894439310376896

[144] Ø. Langsrud, “ANOVA for unbalanced data: Use Type II instead of Type III sums of
squares,” Statistics and Computing, vol. 13, no. 2, pp. 163–167, Apr. 2003. [Online]. Available:
https://doi.org/10.1023/A:1023260610025

[145] C. C. Gramazio, D. H. Laidlaw, and K. B. Schloss, “Colorgorical: Creating discriminable and prefer-
able color palettes for information visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 521–530, Jan. 2017, conference Name: IEEE Transactions on Visualiza-
tion and Computer Graphics.

[146] L. Bartram, A. Patra, and M. Stone, “Affective Color in Visualization,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. Denver Colorado USA: ACM, May
2017, pp. 1364–1374. [Online]. Available: https://dl.acm.org/doi/10.1145/3025453.3026041

[147] M. Rollins, “Beginning lego mindstorms ev3,” in Beginning LEGO MINDSTORMS EV3. A Press,
Berkeley, CA, 2014, 2014.

[148] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. Bers, P. Bontá, and M. Resnick, “Designing
scratchjr: Support for early childhood learning through computer programming,” in Proceedings
of the 12th International Conference on Interaction Design and Children, ser. IDC ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 1–10. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/2485760.2485785

226

https://ieeexplore.ieee.org/document/6883014
https://ieeexplore.ieee.org/document/6883014
https://ieeexplore.ieee.org/document/6021657
https://www.sciencedirect.com/science/article/pii/S259011842100054X
https://www.sciencedirect.com/science/article/pii/S259011842100054X
https://think.cs.vt.edu/blockpy/blockpy
https://doi.org/10.1177/1525822X211012259
https://doi.org/10.1177/0894439310376896
https://doi.org/10.1023/A:1023260610025
https://dl.acm.org/doi/10.1145/3025453.3026041
https://doi-org.ezproxy.library.unlv.edu/10.1145/2485760.2485785

[149] H. T. Tran, H. H. Dang, K. N. Do, T. D. Tran, and V. Nguyen, “An interactive Web-based IDE
towards teaching and learning in programming courses,” in Proceedings of 2013 IEEE International
Conference on Teaching, Assessment and Learning for Engineering (TALE), Aug. 2013, pp. 439–444.
[Online]. Available: https://ieeexplore.ieee.org/document/6654478

[150] W. W. Gaver, “Technology affordances,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’91. New York, NY, USA: Association for Computing Machinery,
1991, p. 79–84. [Online]. Available: https://doi-org.ezproxy.library.unlv.edu/10.1145/108844.108856

[151] D. Norman, The design of everyday things: Revised and expanded edition. Basic books, 2013.

[152] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring program comprehension: A large-
scale field study with professionals,” IEEE Transactions on Software Engineering, vol. 44, no. 10, pp.
951–976, 2018.

[153] J. B. Arnold, “Tufte’s box plot,” https://jrnold.github.io/ggthemes/reference/
geom_tufteboxplot.html, Accessed on March 22, 2024. [Online]. Available: https:
//jrnold.github.io/ggthemes/reference/geom_tufteboxplot.html

[154] R. Mason and G. Cooper, “Distractions in programming environments,” in Proceedings of the Fifteenth
Australasian Computing Education Conference-Volume 136, 2013, pp. 23–30.

[155] N. Peitek, A. Bergum, M. Rekrut, J. Mucke, M. Nadig, C. Parnin, J. Siegmund, and
S. Apel, “Correlates of programmer efficacy and their link to experience: a combined eeg
and eye-tracking study,” in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p. 120–131. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/3540250.3549084

[156] A. G. de Siqueira, P. Feijóo-García, S. Carnell, E. Palmeira, and A. Maxim, “fableblocks: Toward
mitigating programming anxiety with storytelling-based tangible block programming environments,”
in 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2022,
pp. 1–4.

[157] A. Louis, S. K. Dash, E. T. Barr, M. D. Ernst, and C. Sutton, “Where should i comment my
code? a dataset and model for predicting locations that need comments,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
2020, pp. 21–24.

[158] N. Rao, J. Tsay, M. Hirzel, and V. J. Hellendoorn, “Comments on comments: Where code review
and documentation meet,” in 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), 2022, pp. 18–22.

[159] E. Thiselton and C. Treude, “Enhancing python compiler error messages via stack,” in 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),
2019, pp. 1–12.

[160] B. A. Becker, “An effective approach to enhancing compiler error messages,” in Proceedings of
the 47th ACM Technical Symposium on Computing Science Education, ser. SIGCSE ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 126–131. [Online]. Available:
https://doi-org.ezproxy.library.unlv.edu/10.1145/2839509.2844584

227

https://ieeexplore.ieee.org/document/6654478
https://doi-org.ezproxy.library.unlv.edu/10.1145/108844.108856
https://jrnold.github.io/ggthemes/reference/geom_tufteboxplot.html
https://jrnold.github.io/ggthemes/reference/geom_tufteboxplot.html
https://doi-org.ezproxy.library.unlv.edu/10.1145/3540250.3549084
https://doi-org.ezproxy.library.unlv.edu/10.1145/2839509.2844584

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Alex Hoffman

alexzh1907@gmail.com

Degrees:

Bachelor of Science in Computer Science 2000, Hardin Simmons University

Master of Business Administration 2018, University of Nevada Las Vegas

Thesis Title: An Empirical Investigation into the Transitional Friction of Block-Based Programming Lan-

guages

Thesis Examination Committee:

Chairperson, Dr. Andreas Stefik, Ph.D.

Committee Member, Dr. Hal Berghel, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. Fatma Nasoz, Ph.D.

Graduate Faculty Representative, Dr. Gregory Moody, Ph.D.

228

RESEARCH AREAS

Data Science & Computer Science Education, Human Factors in Computing, Accessible Computing

EDUCATION

IN PROGRESS PhD, Computer Science, University of Nevada, Las Vegas, Las Vegas, NV, Anticipated
May 2023
2018 MBA, University of Nevada, Las Vegas, Las Vegas, NV
2000 BS, Computer Science, Math Minor, Hardin-Simmons University, Abilene, TX

PROFESSIONAL EXPERIENCE

University of Nevada - Las Vegas – Las Vegas, NV 2017 – present

Lecturer, Howard Hughes Engineering, Computer Science (Graduate Faculty Status) 2020 – present
§ Developed courses for new data science programs (graduate & undergraduate)

including textbook selection and all course material creation
§ Trained other instructors in teaching data science programming courses I

developed and mentored them throughout the semester
§ Teaching in-person and online (synchronous & asynchronous)
§ Student assessment, development, and mentoring

Graduate Assistant, Troesh Center for Entrepreneurship and Innovation 2017 – 2023
§ Development, maintenance, and security of the websites
§ NSF I-Corps outreach
§ Conference planning and hosting

Camp Manager, GenCyber Camp 2019, 2021
Program is sponsored by the NSA and NSF to address shortage of cybersecurity professionals
§ Taught cyber security concepts and skills to high school students in a summer program
§ Taught students how to design and present a research poster at a conference
§ Oversaw all the student workers, assigned tasks, and designed/coordinated activities

FSI - President 2015 – present

FSI is a technology consulting firm and incubator. Areas of expertise include accelerating early-stage
start-ups with software and web development, cybersecurity excellence, agile & lean process, and
globalization. Clients span North America, Europe, and Asia.

Kalodio – Las Vegas, NV – Founder & CEO 2015 – 2016

Created the company, managed releases, coordinated with team members, and wrote all the server code
utilizing TDD and automated deployment. Kalodio enabled people who were unable to (or don’t want
to) leave their home to work out with a personal trainer via live, two-way video over smartphones and
tablets.

Wiper – New York, NY – Co-Founder & VP, Product & Engineering 2014 – 2015

Co-founded the company and was fully responsible for all product management, UI/UX design,
engineering, cybersecurity, and technical operations. Wiper was built to enable users to privately send

229

messages and then “wipe” them away. Within 9 months, Wiper grew to 10MM+ registered users and
was the #1 overall app in 24 countries.

Unison Technologies – New York, NY – VP, Product Engineering 2013 – 2015

Established this new position with full responsibility for all engineering, cybersecurity, technical
operations product management, and UI/UX design for this entrepreneurial start-up with a budget of
$2M.

QuickOffice – Dallas, TX | Kharkov, Ukraine | Pune, India 2006 – 2013

Director of Engineering - Kharkov, Ukraine 2009 - 2013
Established this new position with full responsibility for all engineering, IT & cybersecurity, and
operations for the newly created iOS division (iPhone, iPad), and acted as the General Manager for the
Ukraine-based division. Managed 10 direct reports (technical managers, IT/cybersecurity, project
managers, HR, facilities)—125 total. Matrix managed 5 (UI/UX, product managers).

Development Manager - Plano, TX 2007 – 2009

ScrumMaster - Plano, TX 2006 – 2007

Automation Engineer - Plano, TX 2006

Nortel Networks – Richardson, TX – Member of Scientific Staff 2001 – 2006

PUBLICATIONS

PEER-REVIEWED JOURNAL ARTICLES

Under
Revision

Hoffman, A., Stabler, H., Stefik, A., “Block Viz: An Empirical Comparison of Professionals'
and Students' Assessment of Block-Based Programming Attributes” Empirical Software
Engineering

2021 Hoffman, A. Et al. “Bountychain: Toward Decentralizing a Bug Bounty Program with
Blockchain and IPFS,” International Journal of Networked and Distributed Computing. June
2021

2019 A. Hoffman and H. Berghel, “Moral hazards in cyber vulnerability markets,” Computer, vol.
52, no. 12, pp. 83–88, 2019.

PEER-REVIEWED CONFERENCE PAPERS

2024 Stefik, A., Allee, W., Contreras, G., Kluthe, T., Hoffman, A., Blaser, B., Ladner, R.,
“Accessible to Whom? Bringing Accessibility to Blocks,” Conference: 2024 ACM SIGCSE,
March 2024

2021 Austria, A., Park, C., Hoffman, A., Kim, Y., “Performance and Cost Analysis of Sia, a
Blockchain-Based Storage Platform,” Conference: 2021 IEEE/ACIS 6th International
Conference on Big Data, Cloud Computing, and Data Science (BCD), September 2021

2020 Hoffman, A., Becceril, E., Moreno, K., Kim, Y. “Decentralized Security Bounty Management
on Blockchain and IPFS,” IEEE CCWC 2020, March 12, 2020.

PRESENTATIONS

230

ACADEMIC CONFERENCES

2020 “Decentralized Security Bounty Management on Blockchain and IPFS,” IEEE CCWC 2020.
January, 2020.

POSTERS

2023 Alex Hoffman. Polyglot Programming with Eye Tracking, UNLV College of Engineering, Las
Vegas, NV.

2019 A Hoffman, E Becerril, K Moreno. Decentralized Security Bounty Management on Blockchain
and IPFS Blockchain Day, UNLV College of Engineering, Las Vegas, NV.

ADDITIONAL PRESENTATIONS

2019 Alex Hoffman, Eric Becerril, Kevin Moreno. Blockchain Day, UNLV College of Engineering, Las
Vegas, NV.

2018 “Crypto as a Currency.” Speaker Opportunity/Challenge. UNLV, Las Vegas, NV.
2009 Invited Guest Speaker. iPhone Dev Camp. Kiev, Ukraine

COURSES TAUGHT

2024 Spring DA 621 Programming for Data Analytics I UNLV
2024 Spring DA 622 Programming for Data Analytics II UNLV
2024 Spring DA 651 Managing Big Data and Web Databases UNLV
2023 Fall DA 621 Programming for Data Analytics I UNLV
2023 Fall DA 622 Programming for Data Analytics II UNLV
2023 Fall DA 651 Managing Big Data and Web Databases UNLV
2023 Spring CS 138 Intro to Programming for Data Science I in Python UNLV
2022 Spring CS 138x Intro to Programming in Python UNLV
2021 Fall CS 135 Computer Science I (in Python) UNLV
2020 Fall CS 140 Computing Languages: Python UNLV

SERVICE

2023–Present EPIQ Steering Committee (Experience Programming in Quorum)
2020–2022 GCEC Event Coordination (Global Consortium of Entrepreneurship Centers)
2005–2017 Board of Young Associates, Hardin-Simmons University, Abilene, TX (service

alumni board)

ACADEMIC WORKSHOPS AND CONFERENCES ATTENDED

CONFERENCES

2022 Troesh Research Conference, Las Vegas, NV, Nov 2022

231

2022 GCEC: Global Consortium of Entrepreneurship Centers Conference, Las Vegas, NV, Oct 2022
2020 GCEC: Global Consortium of Entrepreneurship Centers Conference, Las Vegas, NV, Oct 2020
2020 USC Election Cybersecurity Initiative, Las Vegas, NV, Feb 2020
2019 B-Sides, Las Vegas, NV, Aug 2019
2019 DEF CON, Las Vegas, NV, Aug 2019
2019 Colloquium for Information Systems Security Education, Las Vegas, NV, Jun 2019
2019 Blockchain Day, UNLV College of Engineering, Las Vegas, NV, May 2019

WORKSHOPS

2021 “Resume or Curriculum Vitae: How to Create Them and When to Use Them” UNLV Office of
Online Education, Las Vegas, NV

2021 “Inclusive Teaching Practices” UNLV Office of Online Education, Las Vegas, NV
2021 “Teaching with Business Cases Online for Creativity, Collaboration, & Cohesion” UNLV Office

of Online Education, Las Vegas, NV
2020 “Best Practices in Online Teaching” UNLV Office of Online Education, Las Vegas, NV
2020 “NASA/DRI Cybersecurity Bootcamp.” Las Vegas, NV, Jan 13-17, 2020.
2019 “How to Design Interactive Course Activities.” UNLV Office of Online Education, Las Vegas,

NV.
2019 “Foundations of Accessibility.” UNLV Office of Accessibility Resources, Las Vegas, NV.
2019 “Malware Traffic Analysis.” B-Sides, Las Vegas, NV, Aug 6-7, 2019.
2018 “Blockchain Workshop.” UNLV Department of Computer Science, College of Engineering, Las

Vegas, NV.

AWARDS & DISTINCTIONS

Best Paper: “Decentralized Security Bounty Management on Blockchain and IPFS,” IEEE CCWC 2020
Awarded as Best Paper in the category of Cryptography and Information Security.

NASA/DRI Cybersecurity Bootcamp. Las Vegas, NV
Competitively selected (20% acceptance) to attend a workshop hosted by the Desert Research Institute
and funded by NASA to teach cybersecurity for robotics, UAVs, IoT, and big data.

PROFESSIONAL CERTIFICATIONS

PMI Agile Certified Professional
Certified ScrumMaster
Certified Scrum Product Owner
Certified Scrum Professional

PROFESSIONAL ASSOCIATIONS & STUDENT GROUPS

Project Management Institute

232

Phi Kappa Phi Honor Society—Inducted in 2018
IEEE
National Cybersecurity Student Association 2019-2021
Layer Zero 2018-2021
Shad0w Synd1cate 2018-2021
Rebel Venture Fund 2017-2018

COMMUNITY SERVICE

2023 – present City of Refuge Ministries, Ghana (K–12), Tema, Ghana
2016 – present Three Square, Las Vegas, NV (Volunteer)

233

	Hoffman, Alex.pdf
	Dissertation Approval
	The Graduate College
	The University of Nevada, Las Vegas
	April 11, 2024
	This dissertation prepared by
	Alex Hoffman
	entitled
	An Empirical Investigation into the Transitional Friction of Block-Based Programming Languages
	is approved in partial fulfillment of the requirements for the degree of
	Doctor of Philosophy – Computer Science Department of Computer Science
	Andreas Stefik, Ph.D. Alyssa Crittenden, Ph.D.
	Examination Committee Chair Vice Provost for Graduate Education &
	Dean of the Graduate College
	Hal Berghel, Ph.D. Examination Committee Member
	Laxmi Gewali, Ph.D. Examination Committee Member
	Fatma Nasoz, Ph.D. Examination Committee Member
	Gregory Moody, Ph.D. Graduate College Faculty Representative

