
From MODULES to OBJECTS:

WHAT ARE THE PIECES OF A SOFTWARE SYSTEM?

MODULES:

"a lexically contiguous sequence of program statements, bounded

(the structured paradigm)
by boundary elements, and having an aggregate identifier.”

HOW DO YOU JUDGE IF A SET OF MODULES IS GOOD OR BAD?

CRITERION:

The two concepts are called “Coupling” and Cohesion”.

MODULE COHESION: "the degree of interaction within a module"

7Good Functional/

performs exactly one action (single goal)

Informational
performs # of actions each w own entry point

independent code for each action,

all on same data structure

5
Communicational
performs actions related by the sequence of steps if all

actions are performed on same data

4
Procedural

performs actions related by the sequence of steps

3
Temporal

performs actions related in time

2
Logical

performs related actions/selected by calling module

1Bad
Coincidental

performs multiple, unrelated actions

MODULE COUPLING: "the degree of interaction between two modules"

5Good Data

all arguments are homogeneously used data items

4
Stamp

data structure is passed as arg but

the called module only uses some fields

3
Control

one passes an element of control to the other

2
Common

both have WRITE access to same global data

1Bad
Content

one directly references the content of the other

The general idea is:

Good cohesion is maximal relationships within a "module"

Good coupling is minimal relationships between "modules"

From MODULES to OBJECTS (continued):

WHAT ARE THE PIECES OF A SOFTWARE SYSTEM?

THE STRUCTURED PARADIGM:

MODULES:

"a lexically contiguous sequence of program statements, bounded

by boundary elements, and having an aggregate identifier.”
USING THE STRUCTURED-PARADIGM, THE ARCHITECTURE OF A PRODUCT IS A SET OF “MODULES.”

DATA ENCAPSULATION:
“a data structure together with all actions to be performed

on that data structure”

Encapsulation = a gathering together into one unit,

 all aspects of the real world entity modeled by that unit.

ABSTRACT DATA TYPES:
Data encapsulations that can be instantiated. (i.e., create an object)

INFORMATION HIDING:
“Before a product is designed, a list should be made of

implementation decisions that are likely to change in the future.

Modules should then be designed so that the implementation

details of the resulting design are hidden from other modules.

THE OBJECT ORIENTED PARADIGM:

OBJECTS:

CLASSes

A CLASS is more than just an Abstract Data Type.

There are several differences.

1. The notion of "Subclasses" (-or- "Type Hierarchies")

2. The concept of Inheritance, and

3. Polymorphism and Dynamic Binding

USING OO-Paradigm, THE ARCHITECTURE OF A PRODUCT IS

A SET OF “CLASS HIERARCHIES.”

