
REVIEW for MidTerm Exam #2

--- OVERVIEW ---

Activities Involved in the Analysis & Design Workflow:

1. UML Diagrams:

(2-3 questions)

Class Diagrams

Sequence Diagrams

StateChart Diagrams

2. Object Oriented Analysis
 & Design:

(3-4 questions)

 (“Algorithm” for Object-Oriented Analysis)

Methods for identifying classes

Methods/Considerations for developing the class diagram

Methods/Intuition for discovering needed diagram refinements

3. Other Object-Oriented Concepts: (Website)

(2-3 questions)

Constructors, Error Handling, & Scope

Elaboration Phase Deliverables:

(& state of completion)

(1-2 questions)

1. Complete1 Requirements Model

2. Complete1 Architectural Model

3. Preliminary Design Model

4. Initial Source Code

5. Initial Test Plan/Test Code

Testing of Elaboration Phase Models:

(1-2 question)

CRC card testing:

 Total

(8-12 questions)

--- DETAIL ---
The Unified Process

Activities Involved in the Analysis & Design Workflow:

1. UML Diagrams:
(no questions on Rational Rose)

What is modeled by a . . . diagram? (Static structure or Dynamic behavior)

Names &symbols of components, legal patterns, meaning of symbols?

Class(Object) Diagrams

What do Class diagrams model?

What are the components of a class diagram?

What relationships can exist between components?

Class relationships: Named Associations,

Communicates-with or manages.

Dependency- Aggregate, Composition, Inheritance(gen.)

Sequence Diagrams (No Communication Diagrams --- Class Coupling)

What do Sequence diagrams model?

What are the components of a Sequence diagram?

What relationships can exist between components?

StateChart Diagrams

What do StateChart diagrams model?

What are the components of a StateChart diagram?

What relationships can exist between components?

a. Class Diagrams: (static model of system components)

Set of classes &

Class Relationships:
Asssociations(named) (Comm-with, Creates, Receives)

Dependancies:

Agg/Comp(Has-A)

Inharitance(Is-A)

An obj of class A sends a message to an object of class B.

Communicates-with

An obj of class A creates an object of class B. (or vice versa)

Creates ASSOC

An obj of class A has an attribute whose values are objects of class B.
Contains AGG/COMP

An obj of class A receives a message w an object of class B as an arg.
Receives ASSOC

Q. What symbol(s) are used for Aggregation, Composition, & Inheritance?

b. Sequence Diagrams: (Adynamic model of a use-case/scenario requirements)

Shows the actor(s) involved & the classes involved in ONE particular use-case scenario

COMPONENT
SYMBOL

INFORMATION

Actor(s)/Objects
Actor figure, object name

Name & symbol

** Lifelines (vertical lines) below each figure are automatically provided. **

Message arrow
Arrow fm 1 lifeline to anoth
er
Message & source & destination

In time sequence

c. State-Chart Diagrams: (A dynamic model of the behavior of 1 or more classes)

Elements:

Start state

Bullet

Statechart diagrams show States

Rounded rectangles (w event/action annotation)

Connected by Transitions

Arrows (with event/action annotation)

Stop state

Circle around a bullet

State symbol

|

State Name

|

|
Variable: Type = InitialValue
|

 pattern for state actions
|

entry / action

|

 state/action annotation
|

do / activity

|

|

exit / action

|

|
event / action (arguments)

|

event(args)[condition] / action

Transition

 ---(

pattern for transition actions

 event/action annotation

2. General steps involved in doing OO-Analysis

“Algorithm” for Object-Oriented Analysis – NO QUESTIONS - EXCEPT

Q. What methods have we discussed for identifying classes?

Ans. The methods we have discussed for identifying classes are:

 1. Identify candidate classes from the list of Business Processes

 2. Deduce Classes from Use Cases/Scenarios (i.e., Elevator/Floor buttons)

 3. Noun Extraction

Stage1:
 Describe the product in a single paragraph.

Stage2:
 Identify the nouns. (& use these as a first set of classes)

 Exclude nouns outside the problem boundary, &

 abstract nouns (request) that have no physical existence.

 Remaining nouns are a “starting” point for the set of classes.

 4. Entity Class Extraction (Boundary, Control, & Entity classes)

Functional modeling: High risk use-cases/scenarios

Entity class modeling: Determine entity classes needed for

these use-cases. Determine interactions between entity

classes. Present this as a class diagram.

Dynamic modeling: Construct a statechart model of all

operations performed by or to each entity class.

 5. Sequence Diagrams (esp. for highest risk use cases/event flows)

Infer the classes needed to successfully model the event flows.

Q. What are the main ideas that we have discussed for discovering needed class refinements?

Ans. Ideas for discovering needed Class refinements are:

 1. Cohesion & Coupling of Classes/Objects,

 2. Separation of Concerns,

 3. Two principles of OO-Design,

Keep as much as possible private, &

Use the strongest relationships that are appropriate

Q. What are the benefits of using composition?

Ans. Composition produces systems of less complex parts,

that are more interchangeable, can be built and tested

independently, & are easier to maintain.

 4. Responsibility Driven Design
(see next page)

RESPONSIBILITY DRIVEN DESIGN
Definition:
Role: A role is a set of related responsibilities.

Objects that play the same role can be interchanged.

Q. What are typical role-stereotypes?
 Ans. Information Holder: knows and provides information

 Structurer:

 maintains relationships between objects and

information about those relationships

 Service provider:
 performs work, & in general, offers computing services

 Controller:

 makes decisions and closely directs other’s actions
Definition:
Responsibility: Responsibilities are general statements about software objects that include:

1.
the actions an object performs,

2.
the knowledge an object maintains, and

3.
major decisions an object makes that affect other objects.

Two different objects can play the same role and satisfy the same responsibilities,

but have a different implementation.

It is useful to think about an object, asking, “What role does it play?” This helps us concentrate on what it should be and what it should do.

Object roles refer to an exterior view of what general service is offered by the object.

Object responsibilities refer to a more detailed interior view of the service offered.

Note, that the “interior” view does not specify the details of an implementation.

Indeed, different implementations of these responsibilities are possible.

How to optimally distribute individual responsibilities between objects is often the most difficult problem in object design.

Definition:

Collaboration: To collaborate is to work together, in a joint intellectual effort.

An application implements a system of responsibilities.

Responsibilities are assigned to roles.

Roles collaborate to carry out their responsibilities.

Q.
Using RDD, what activity lies at the heart of Object Design?

Ans.
The design of well-formed patterns of collaboration lies at the heart of any Object Design.

Other Object-Oriented Concepts (Handout)

What are Constructors? What is the Default Constructor?

(No questions on Multiple or Subclass Constructors.

What are Overloading Methods?

What are different approaches to Error Handling? (What is preferred?)

What is class, object, &/or local scope?)

CONSTRUCTORS:
When the name of a method is the same as the name of the class that it is being declared in (and no return type is provided) this method is called a “constructor.” Java&C++

The compiler will recognize this and consider the method to be a CONSTRUCTOR.

Its most important function is to set the memory allocated to an initial stable state.

WHEN CALLED?:

Everytime a “new” object is created, the constructor will

automatically be called, passing arguments in the param list

THE DEFAULT CONSTRUCTOR:
Provided for the Superclass if no constructor is provided in the subclass. (It is best to ALWAYS provide a constructor.)

OVERLOADING METHODS:

Allows a programmer to use the same method name over &
over, as long as the “Signature” is different every time.

Signature = method name + parameter list

MULTIPLE CONSTRUCTORS:

A programmer can actually provide “multiple”

constructors. (By using “overloading”)

SUBCLASS CONSTRUCTORS:

When a subclass object is created (new ?):

1. the constructor of the superclass is called,

2. class attributes that are part of the class definition,
(i.e., instance variables) are initialized, and then

3. the remaining subclass constructors are called.

THE DESIGN OF CONSTRUCTORS:
ALWAYS initialize all class variables in a constructor.
ERROR HANDLING: (How to construct Bulletproof code!)

CHECK & ABORT

CHECK & ATTEMPT TO RECOVER

THROW AN EXCEPTION (catch & throw) The preferable alternative

THE CONCEPT OF SCOPE: Both methods and attributes can be shared in different ways within a class.
CLASS SCOPE:
All objects of a class can share one copy of an attribute or method “static”
OBJECT SCOPE:
Each object of a class can have a different copy of an attribute or method
LOCAL SCOPE:
Each method within a class can have a different copy of an attribute

Elaboration Phase Deliverables: (Analysis&DesignModeling section)

In class, we defined the initial Elaboration phase deliverables to be:

1. A Product Architectural Representation

2. A Record of Architecture Development

3. A System Class Diagram (Including most imp. attributes

& methods), and

4. The Process View (for multi-threaded systems)

Q.
What are the components of part 2 (i.e. the “record of architectural development”)?

Ans.
The “record of architectural development” includes:

1. A List of main Classes/Objects needed for the product

2. A Class Risk List (High, Medium, Low)

3. The UseCase/Event Flow Modeling (for all high-risk event-flows)

UseCase name, EventFlow name, and Sequence Diagram

and possibly

4. The Dynamic (State Chart) Modeling of Classes (for high risk classes)

(State Chart Model 1, State Chart Model 2, ……)

Since we emphasize work in the Requirements and Analysis&Design workflows, and the Inceptionand Elaboration phases in CS 472, Source Code, TestPlan/Code, Project Planning and the User Manual workflows are not required deliverables. Obviously, in the real world, each of these is also important.

Testing of Elaboration Phase Models:

CRC cards:

Q.
What information is listed on each CRC card?

Ans.
Name of a class, C

List of its responsibilities R,

List of its collaborators C….

Q. What activity is conducted by the participants in CRC card testing of an OO-Design?

Ans.
Participants in CRC card testing of an OO-Design verbally simulate the sequence

of messages between objects in the system and discuss the activity initiated by

each message. (Beginning with the person that has the start-up class, each person

says: “My responsibility is to do R, and I collaborate with class C.” (– object O)

Then, the person with the class C card says what is his responsibility (and possibly

what other class he collaborates with, … etc. to conduct a “verbal” execution of

product code.)

