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The Randomized 2-Server Problem

Best: RANDOM SLACK 2-competitive
[Coppersmith, Doyle, Raghavan, Snir, 90]

Not known to be best possible.

Lower Bound: 1 + e−
1
2 ≈ 1.6065

[Chrobak, Larmore, Lund, Reingold, 97]

Line: 155
78 ≈ 1.987

[Bartal, Chrobak, Larmore, 98]
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2 servers in a metric space
M

request sequence
̺ = r1r2

, . . . , rn

online: decision must be
made before r i+1 is
revealed

Goal: minimize total
movement cost
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the locations of the two
servers is called a
configuration

solution can be described
as a sequence of
configurations

the movement cost is the
transportation distance
between configurations
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Online Algorithms

1 Algorithm A is at some initial configuration a0

2 Requests: ̺ = r1
, . . . , rn.

3 At time (t − 1), A is at configuration at−1.
4 A has to serve r t not knowing r t+1

, . . .

5 A chooses a configuration at .
6 A incurs cost(at−1

, r t
, at).

If A uses randomization in bullet 5 then A is called
a randomized online algorithm.
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2-Server Example

Example: k = 2 and ̺ = xyxyz
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x

cost = 7
x

y
z

“Work Function Algorithm” (WFA)
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The Adversary: Optimal Cost

Function on configurations: Dynamic programming
The optimal cost of being there then

1
2

2

x

z

z

yz

y

x

z
y

z

x

y
z

x

z
x

x

y

x

y

x

y

y

2

1

2

4

4

2

4

23

0

2

optcost = 4
= min last workfunction

Given request sequence ρ

ω
ρ(a) = min cost of serving ρ and ending in configuration a ∈ X
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Support of a Work Functions

ω({y, z}) ω({x, z}) ω({x, y})
initial 0 1 2

request x 2 1 2
request y 2 3 2
request x 4 3 2
request y 4 4 2
request z 4 4 6

S ⊆ X supports ω if for any b ∈ X there exists some
a ∈ S such that ω(b) = ω(a) + |a, b|.
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Support of a Work Functions

ω({y, z}) ω({x, z}) ω({x, y})
initial 0 1 2

request x 2 1 2
request y 2 3 2
request x 4 3 2
request y 4 4 2
request z 4 4 6

S ⊆ X supports ω if for any b ∈ X there exists some
a ∈ S such that ω(b) = ω(a) + |a, b|.
A “reasonable algorithm” will move to configurations in
the support.

WFA moves for request r from configuration a to
configuration b such that |a, b| + ω(b) is minimized.
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Competitiveness

For request sequence ̺ = r1
, r2

, . . . consider

costA(̺): the cost on ̺ achieved by A
costopt(̺): the cost on ̺ achieved by opt

We say that A is C-competitive if for each sequence ̺ we have

EcostA(̺) ≤ C · costopt(̺) + K

——————————————————-
Example:

costWFA(xyxyz)

costopt (xyxyz)
=

7

4
WFA is 2-competitive

Wolfgang Bein A Randomized Algorithm for Two Servers in Cross Polytope Spaces



The Two Server Problem
Models of Online Computation

Results

The Distributional Model

A randomized algorithm can be viewed as a determistic
algorithm on distributions.

X = all configurations

π is a distribution on X .

Algorithm A is at some initial configuration a0.
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The Distributional Model

A randomized algorithm can be viewed as a determistic
algorithm on distributions.

X = all configurations

π is a distribution on X .

Algorithm A is at some initial configuration a0.

Requests: ̺ = r1
, . . . , rn.

At time (t − 1), A is at distribution π
t−1.

A has to serve r t not knowing r t+1
, . . .

A chooses deterministically a distribution π
t .
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Cost in the Distributional Model

x

x
z

y

x
z

y

z

y

x
z

y

x
z 1

4

3
4

1
2

1
2

cost 2, 1/4 transport

cost 0, 1/4transport

cost 2, 1/4 transport

Total cost: 1

“Transportaion Cost” = 1

The cost incured by moving from one distribution to the next is
calculated by moving mass along a transportaion problem.

The transportation problem has the Monge property.
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Work Function “Guided”

_
2
1

_
2
1

_1
3

_1
3

_1
3

4
_1

4
_1

4
_1 4

_1

b

a

c

a

b

d a

bc

e a

b

c
d

1

Problem: The “support” grows without bound.
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Forgiveness

Lower the work function on selective
configurations
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Forgiveness

Lower the work function on selective
configurations

4
_1

4
_1

4
_1 4

_1_1
3

_1
3

_1
3

d a

bc

e a

b

c

d

1

e a

b

c
d
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Forgiveness

Lower the work function on selective
configurations

4
_1

4
_1

4
_1 4

_1_1
3

_1
3

_1
3

d a

bc

e a

b

c

d

1

e a

b

c
d

Work functions are now estimators
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Las Vegas

Algorithm is constructed using the “mixed model” of online
computation

d a

bc

d a

bc

_1
3

_1
3

_1
3

_1
3

_1
3 _1

3

2__
3

_1
3

_
2
1

_
2
1b

a

c

a

b

1

1

c

a

b

d

1

d a

bc

1 1

1

0

1

11
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2-Server Problem: M24

M24 consists of all metric spaces such that

All distances are 1 or 2.

d(x , y) + d(x , z) + d(y , z) ≤ 4
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Why M24?

A step in the direction of the goal (better than 2-competitive
randomized algorithm for the 2-server problem).
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randomized algorithm for the 2-server problem).

Allows a simple example of the knowledge state method.
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Why M24?

A step in the direction of the goal (better than 2-competitive
randomized algorithm for the 2-server problem).

Allows a simple example of the knowledge state method.

An interesting class in its own right, generalizing the
octahedron.
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Exactly Three Infinite Families of Convex Regular
Polytopes

(Ludwig Schläfli, 1852)

Metric
Space
Class

Class
Graph

Infinite
Family of
Regular
Polytopes

Complete
Graphs

Uniform
Spaces

Metric
Spaces

Hamming

Graphs
Circulant

Regular
Simplices

3−d 4−d

24M
Cross
Polytopes

= Orthoplices Ci1,...,n−1(2n)

Hypercubes Hypercubes

Wolfgang Bein A Randomized Algorithm for Two Servers in Cross Polytope Spaces



The Two Server Problem
Models of Online Computation

Results

What is a Knowledge State?

Knowledge state k = (ω, π):

ω : X → R is the estimator.

π is a distribution on X .

7/8
0

z

x

y
1/2

1/8

π(x, y) is the probability we are at {x, y}.

ω(x, y) is the estimated unpaid cost of the adversary if it is at {x, y}.
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A Closer Look

The estimator and
distribution
defined for
configurations
but characterized
by their values
only on the

are
all

support

1/8

Bxyz

7/8
0

01

0
3/2

z

x

y
0

1
1/2

1/8

If a ∈ X − S, then

π(a) = 0.

ω(a) = minb∈S {ω(b) + ‖a, b‖}
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Knowledge States for the 2-Server Problem

5
12
_

z x
Axz

0

z
0

y
Bxyz

0

x
z

Exz

x

Cz

z

29
24
_ x Fxz

z_0

Hxz

z
_

x
_

zx

x
z

Gxz

x1

Dxyz

x

z

y

1_
2 0

1_5
24

2
_1

1
2
_

17

5
12
_

12
_

_
z

7
4
_

_ z

z
_

_19

19
24

24
_

4
1_

_
8
3

8
_3

5
24
_

2
_1

2
1_

1

_

0

0

0

0

0

0

01_
4

7_
 6

0

01_
4

0

0

x

Up to symmetry, there are 8 knowledge states of a 19
12 -competitive

algorithm for M2,4.
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There are Numerous Moves. Here is One.
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_
3
1

_
x

_
z

_
3
1

_
3
1
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 6 _1

4
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2
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4
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4
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4
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4
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_
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3
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3
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3

_
12
13 _

3
2

y

z

0

yx z

Intermediate State W 
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0

x00
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0
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0
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y
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One Move of the Algorithm

Start at a standard knowledge state over (x , y , z).
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One Move of the Algorithm

Start at a standard knowledge state over (x , y , z).

Read a request r .

Update the estimator.

Move the distribution.

Las Vegas. Randomly pick a subsequent.
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One Move of the Algorithm

Start at a standard knowledge state over (x , y , z).

Read a request r .

Update the estimator.

Move the distribution.

Las Vegas. Randomly pick a subsequent.

We are at a standard knowledge state over (x , y , r), (y , x , r),
(x , z, r), (z, x , r), (y , z, r), or (z, y , r).
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A Table of All Moves

KS State Request Resulting KS Φ0 Φ1 offset costA slack
Axz x̄ Cx 0 5

12 1 1 1
6

Axz r Bxzr 0 7
12 1 1 0

Bxyz x Axz 7
12 0 0 1

2
1

18
Bxyz z̄ Bxyz̄ 7

12
7

12 1 1 7
12

Bxyz x̄ Dyzx̄ 7
12

7
6 1 1 0

Bxyz r 1
3 Bxyr +

1
3 Bxzr +

1
3 Byzr 7

12
7

12
2
3 1 1

18
Cz r Gzr 5

12 1 1 1 0
Dxyz x Ez̄x 7

6
5

12 0 3
4 0

Dxyz z̄ Cz 7
6

5
12 0 1

2
1
4

Dxyz x̄ 1
3 Dyzx̄ +

1
3 Dyz̄x̄ +

1
3 Gzx̄ 7

6
10
9

2
3

13
12

1
36

Dxyz r 1
2 Bxzr +

1
2 Byz̄r 7

6
7

12
1
2 1 3

8

Exz x Fzx 5
12

29
24 1 19

24 0
Exz x̄ Ax̄z 5

12 0 0 5
12 0

Exz z̄ Ax̄z 5
12 0 0 5

12 0
Exz r Bx̄zr 5

12
7

12 1 1 5
12

Fxz x Ezx 29 5 0 19 0
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Behavioral Version: The Wireframe Algorithm

_
z

x
_

z
y

x
yzx

_d

_1
6

_1
3

_1
3

_
z

dxyz

z
y

x

_1
6

yzx
_d

_
z

x
_

z
y

x
yzx
__d

x
_

_
z

z
y

x
yzx
__d

x
_

_
z

z
y

xrequest x

The algorithm has no concept of knowledge states, it merely
remembers where the servers are and keeps track of only very
limited extra information. Upon a request, depending on this extra
information, the algorithm then decides how to move the servers and
how to update its information.
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A Complete Table of Moves

axz , xz x̄ 1{cx , xx̄}
axz , xz r 1

2{bxzr , xr} +
1
2{bxzr , zr}

bxyz , xz x 1{axz , xz}
bxyz , yz x 1{axz , xz}
bxyz , xz x̄ 1{dyzx̄ , xx̄}
bxyz , yz x̄ 1

2{dyzx̄ , yx̄} +
1
2{dyzx̄ , zx̄}

bxyz , xz z̄ 1{bxyz̄ , xx̄}
bxyz , yz z̄ 1{bxyz̄ , yx̄}
bxyz , xz r 1

3{bxyr , xr} +
1
3{bxzr , xr} +

1
6{bxzr , zr} +

1
6{byzr , zr}

bxyz , yz r 1
3{bxyr , yr} +

1
6{bxzr , zr} +

1
3{byzr , yr} +

1
6{byzr , zr}

cxz , zz̄ r 1
2{gzr , zr} +

1
2{gzr , z̄r}

dxyz , xz x 1{ez̄x , yz}
dxyz , yz x 1{ez̄x , yz}
dxyz , z̄z x 7

12{ez̄x , yz} +
5

12{ez̄x , yz̄}
dxyz , xz z̄ 1{cz , zz̄}
dxyz , yz z̄ 1{cz , zz̄}
dxyz , z̄z z̄ 1{cz , zz̄}
dxyz , xz r 1{bxzr , xr}
dxyz , yz r 1

2{bxzr , zr} +
1
2{byz̄r , z̄r}

dxyz , z̄z r 1{byzr , yr}
Wolfgang Bein A Randomized Algorithm for Two Servers in Cross Polytope Spaces



The Two Server Problem
Models of Online Computation

Results

Results for the 2-Server Problem in M2,4

2-Server Problem on M2,4, C = 7
4
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Results for the 2-Server Problem in M2,4

2-Server Problem on M2,4, C = 7
4

2-Server Problem on M2,4, C = 19
12 ≈ 1.583
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Results for the 2-Server Problem in M2,4

2-Server Problem on M2,4, C = 7
4

2-Server Problem on M2,4, C = 19
12 ≈ 1.583

This is optimal for M2,4. uniform spaces i.e. paging, the
optimal competitiveness is C = 1.5.
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Results for the 2-Server Problem in M2,4

2-Server Problem on M2,4, C = 7
4

2-Server Problem on M2,4, C = 19
12 ≈ 1.583

This is optimal for M2,4. uniform spaces i.e. paging, the
optimal competitiveness is C = 1.5.

Open: a better than 2-competitive randomized algorithm
for 2 servers in general spaces.
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The 2-server problem for general spaces
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Further Research

The 2-server problem for general spaces

CNN:
Deterministic: lower bound: 6 +

√
17

[Koutsoupias, Taylor, 2005]
Deterministic: upper bound: 105, 879
[Sitters Stougie 2005]
Randomized: Open
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